Crystal structure of 9,10-bis(phenylethynyl)anthracene

Masahiko Maekawa,^{a,*} Yusaku Suenaga,^b Takayoshi Kuroda-Sowa^b and Megumu Munakata^b

^aResearch Institute for Science and Technology, Kinki University, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan ^bDepartment of Chemistry, Kinki University, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan

(Received, November 25, 1999)

Abstract

Single crystals of 9,10-bis(phenyletynyl)anthracene (1) were prepared and the structure was crystallographically determined. Crystal data: Formula $C_{15}H_9$; Formula weight, 189.24; Crystal system, Monoclinic; Space group, C2/c; a=22.855(5), b=5.359(5), c=16.939(3)Å, $\beta=99.98(2)^\circ$, U=2043(1)Å³, Z=8, $D_{calc}=1.230$ cm⁻³, RI=0.060 and wR2=0.207.

Key words: Anthracenes, Alkynes, Crystal structures

1. Introduction

The cross-coupling of terminal alkynes and aryl halides catalyzed by palladium and copper¹ has been used widely to prepare ethynylarenes² and their derivatives.³ Many organic and polymeric new materials⁴ have been prepared in recent years via this method. In particular, 9,10-bis(*p*-R-phenylethynyl)-anthracenes (R=H,⁵ and OMe⁶) are highly emissive with quantum yields approaching unity,^{6b,7}

suggesting their use as laser dyes, scintillation agents and elecrochemiluminescence fluorescers.⁸

In this study orange single crystals of 9,10-bis-(phenylethynyl)anthracene (1) were by chance obtained from THF reaction solution of $AgClO_4$ and 1, and the structure was crystallographically characterized.

2. Experimental

An orange prism crystal of **1** having approximate dimensions of 0.20 x 0.20 x 0.20 mm was mounted on a glass fiber. All measurements were made on a Rigaku AFC-7R diffractometer with a graphite mono-chromated Mo Ka radiation and a rotating anode generator. The details of measurement conditions and crystal data are listed in Table 1. The intensity data were collected at a temperature of 23°C using the ω -2 θ scan technique to a maximum 2 θ of value of 55.0°. Of the 2651 reflections which were collected, 2583 were unique(R_{int}=0.015). The intensities of three representative reflections which were measured after every 150 reflections. decay correction was applied. The linear absorption coefficient, μ , for Mo K α is 0.70cm⁻¹. Azimuthal scans of several reflections indicated no need for an absorption correction. The data were corrected for Lorentz and polarization effects.

The structures were solved by a direct method (SIR88)⁹ and expanded using Fourier technique. The non-hydrogen atoms were refined anisotropically. All hydrogen atoms were located by Fourier difference synthesis. Hydrogen atoms were refined isotropically. The final cycle of full-matrix leastsquares refinement was based on 2331 observed reflection, and 173 variable parameters. Reliability factors are defined as $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_c|$ and wR2 = $[\Sigma(F_o^2 - F_c^2)/\Sigma w(F_o^2)^2]^{1/2}$. The final *R1* and *wR2* values were 0.060 and 0.207, respectively. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.35 and -0.34eÅ⁻³, respectively. Atomic scattering factors and anomalous dispersion terms were taken from the International Tables for X-ray Crystallography, Vol. IV.¹⁰ All calculations were performed using the crystallographic program teXsan software package.11

Table 1 Details of crystal data for 1			
Formula	C ₁₅ H ₉		
Formula weight	189.24		
Crystal system	Monoclinic		
Space group	<i>C</i> 2/c		
<i>a</i> (Å)	22.855(5)		
<i>b</i> (Å)	5.359(5)		
<i>c</i> (Å)	16.939(3)		
β (°)	99.98(2)		
$U(Å^3)$	2043(1)		
Ζ	8		
D_{calc} (gcm ⁻³)	1.230		
μ_{eff} (cm ⁻¹)	0.070		
Radiation	Mo Kα (0.7107Å)		
Measurement method	ω-2θ		
No. of reflections measured	2651 (total)		
No. Observations	2331 (all data)		
R 1	0.060		
wR2	0.207		

Table 2	2 A	Atomic	coordinates	for	1
---------	-----	--------	-------------	-----	---

Table		oralitates for 1		
Atom	X	Y	Ζ	Beq
C(1)	0.1635(1)	-0.0641(5)	0.8349(1)	5.99(6)
C(2)	0.2071(1)	-0.0625(5)	0.9014(1)	6.85(6)
C(3)	0.2505(1)	0.1152(6)	0.9102(1)	6.30(6)
C(4)	0.2490(1)	0.2975(6)	0.8536(1)	6.54(6)
C(5)	0.2051(1)	0.2984(5)	0.7861(1)	5.76(5)
C(6)	0.16188(8)	0.1146(4)	0.7754(1)	4.46(4)
C(7)	0.11830(8)	0.1007(4)	0.7045(1)	4.81(4)
C(8)	0.08316(8)	0.0758(4)	0.6430(1)	4.71(4)
C(9)	0.04147(8)	0.0385(4)	0.5713(1)	4.37(4)
C(10)	0.04343(8)	0.1909(4)	0.5037(1)	4.32(4)
C(11)	0.08588(9)	0.3884(4)	0.5054(1)	5.09(5)
C(12)	0.08661(10)	0.5352(4)	0.4404(1)	5.45(5)
C(13)	0.04504(10)	0.4977(5)	0.3695(1)	5.49(5)
C(14)	0.00406(9)	0.3120(4)	0.3650(1)	5.04(5)
C(15)	0.00183(8)	0.1530(4)	0.4319(1)	4.31(4)

3. Results and discussion

Molecular structure¹² of **1** is shown in Fig. 1, together with the atomic labeling scheme. The compound **1** possesses an inversion center of symmetry at the center of anthracene ring. The dihedral angle between the phenylethynyl group and anthracene ring and is 9.7° . The central anthracene ring and two substituted phenylethynyl groups are nearly coplanar. The bond distance and bond

angles of **1** are listed in Table 3. These distances and angles are close to those found in analogous compounds.^{1d,13} The crystal packing view of **1** is presented in Fig. 2. The half portion of the central anthracene rings is overlapping each other. The close separation of 3.43Å is indicative of the occurrence of the π - π stacking.

Fig. 1 Molecular structure of 1 with the atomic labeling scheme

Table 3 Selected bond distances and bond angles for 1					
C(1)-C(2)	1.369(3)	C(1)-C(6)	1.386(3)		
C(2)-C(3)	1.365(4)	C(3)-C(4)	1.365(4)		
C(4)-C(5)	1.385(3)	C(5)-C(6)	1.384(3)		
C(6)-C(7)	1.423(2)	C(7)-C(8)	1.207(2)		
C(8)-C(9)	1.422(2)	C(9)-C(10)	1.414(3)		
C(9)-C(15)	1.420(3)	C(10)-C(11)	1.432(3)		
C(10)-C(15)	1.423(2)	C(11)-C(12)	1.356(3)		
C(12)-C(13)	1.410(3)	C(13)-C(14)	1.360(3)		
C(14)-C(15)	1.425(3)				
C(2)-C(1)-C(6)	121.2(2)	C(1)-C(2)-C(3)	120.4(2)		
C(2)-C(3)-C(4)	119.6(2)	C(3)-C(4)-C(5)	120.6(2)		
C(4)-C(5)-C(6)	120.3(2)	C(1)-C(6)-C(5)	117.9(2)		
C(1)-C(6)-C(7)	120.3(2)	C(5)-C(6)-C(7)	121.8(2)		
C(6)-C(7)-C(8)	175.9(2)	C(7)-C(8)-C(9)	178.2(2)		
C(8)-C(9)-C(10)	120.0(2)	C(8)-C(9)-C(15)	119.6(2)		
C(10)-C(9)-C(15)	120.4(2)	C(9)-C(10)-C(11)	121.8(2)		
C(9)-C(10)-C(15)	120.0(2)	C(11)-C(10)-C(15)	118.2(2)		
C(10)-C(11)-C(12)	121.1(2)	C(11)-C(12)-C(13)	120.5(2)		
C(12)-C(13)-C(14)	120.5(2)	C(13)-C(14)-C(15)	120.8(2)		
C(9)-C(15)-C(10)	119.6(2)	C(9)-C(15)-C(14)	121.5(2)		
C(10)-C(15)-C(14)	118.9(2)				

Fig. 2 Crystal packing views of **1**. Side view (a) and top view (b).

References and Notes

- [1] (a)L. Cassar, J. Organomet. Chem., 1975, 93, 253; (b)H. A. Dieck and R. F. Heck, J. Organomet. Chem., 1975, 93, 259; (c)K. Sonogashira, T. Toda and N. Habihara, Tetrahedron Lett., 1975, 4467; (d)P. Nguyen, S. Todd, D. V. den Biggelaar, N. J. Taylor, T. B. Marder, F. Wittmann and R. H. Friend, SYNLETT, 1994, 299.
- [2] (a)L. D. Ciana and A. Haim, J. Heterocyclic Chem., 1984, 21, 607; (b)T. X. Neenan and G. M. Whiteside, J. Org. Chem., 1988, 53, 2489; (c)A. E. Stiegman, E. Graham, K. J. Perry, L. K. Khundkar, L. -T. Cheg and J. W. Perry, J. Am. Chem. Soc., 1991, 113, 7658.
- [3] (a)M. d'Alarcoa and N. J. Lemonard, J. Org. Chem., 1985, 50, 2462; (b)A. N. Tischler and T. J. Lanza, *Tetrahedron Lett.*, 1986, 27, 1653; (c)B. M. Trost, C. Chan, G. Ruhter, J. Am. Chem. Soc., 1987, 109, 3486; (d)Y. Zhang and J. Wen, J. Am. Chem. Soc., 1990, 112, 727.
- [4] (a)T. Tahara, K. Seto and S. Takahashi, *Polym. J.*, 1987, **19**, 301; (b)E. M. Graham, V. M. Miskowski, J. W. Perry, D. R. Coulter, A. E. Stiegman, W. P. Schaefer and R. E. Marsh, *J. Am. Chem. Soc.*, 1989, **111**, 8771; (c)C. Viney, R. J. Twieg, C. M. Dannels and M. Y. Chang, *Mol. Cryst. Lig. Cryst. Lett*, 1990, **75**, 147; (d)S. J. Davies, B. F. G. Johnson, M. S. Khan and J. Lewis, *J. Chem. Soc., Chem. Comm.*, **1991**, 187.
- [5] W. Ried, W. Donner, W. Schlegemilch, Chem. Ber., 1961, 94, 105.
- [6] (a)P. J. Hanhela and D. B. Paul, Aust, J. Chem., 1981, 34, 1669; (b)P. J. Hanhela and D. B. Paul, Aust, J. Chem., 1981, 34, 1701.
- [7] C. A. Heller and R. A. Henry, B. A. Mclaughlin and D. E. Bliss, *J. Chem. Eng. Data*, 1974, **19**, 214.
- [8] S. K. Gill, Aldrichimica Acta, 1983, 16, 59.
- [9] "SIR88", M, C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, G. Polidori, R. Spagna and D. Viterbo, J. Appl. Cryst., 1989, 22, 389
- [10] "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, 1974.
- [11] "teXsan", TEXRAY structure Analysis Package, Molecular Structure Corporation, The Woodlands, TX, USA (1985 and 1992).
- [12]Complex **1** has a polymorphous structure, which has been reported in ref 1(d): $Fw=C_{30}H_{18}$; Mw= 378.4; crystal system, orthormbic, P_{bcn} ; a=24.305(4); b=11.512(1); c=7.099(1)Å; U=1986.1(5)Å³; Z=4; $D_{calc}=1.226$ g/cm³; $\mu=0.67$ cm⁻¹; R=0.042 and $R_{W}=0.042$.
- [13] (a)P. P. Korkas, E. Weber, M. Czugler and G. Náray-Szabó, J. Chem. Chem. Comm., 1995, 2229;
 (b)H. -D. Becker, V. A. Patrick and A. H. White, Aust. J. Chem., 1984, 37, 2215; (c)F. Vögtle,
 H. Koch and K. Rissanen, Chem. Ber., 1992, 125, 2129.