二座窒素配位子により橋かけされた新規な二核および 三核イリジウムヒドリド錯体

前川雅彦^{a*}・末永勇作^b・黒田孝義^b・宗像 恵^b ^a近畿大学理工学総合研究所 ^b近畿大学理工学部理学科化学コース 〒577-8502 大阪府東大阪市小若江3-4-1

Novel Di- and Trinuclear Iridium Complexes Bridged by Various Bidentate Nitrogen Ligands

Masahiko Maekawa,^{a*} Yusaku Suenaga,^b Takayoshi Kuroda-Sowa,^b and Megumu Munakata^b

^aResearch Institute for Science and Technology, Kinki University,
^bDepartment of Chemistry, Kinki University,
3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
^aE-mail: maekawa@rist.kindai.ac.jp

(Received, October, 10, 2002)

Abstract: Reactions of Ir hydrido complex [Ir(H)₂(PPh₃)₂(Me₂CO)₂]X (X=PF₆, BF₄) with bidentate nitrogen ligands such as 3,6-di-2-pyridyl-1,2-bis(4-pyridyl)ethylene (bpe), 1,2,4,5-tetrazine (dpt), 4,4'-pyridyl disulfide (dps), 4,4'-trimethylenedipyridine (tmdp) in CH₂Cl₂ afforded various di- and trinuclear Ir hydrido complexes, $[Ir_2(H)_4(PPh_3)_4(dpt)](PF_6)_2$ (1), $[Ir_2(H)_4(PPh_3)_4(bpe)_2](BF_4)_2$ (2), $[Ir_2(H)_4(PPh_3)_4(dps)_2](PF_6)_2$ (3) and $[Ir_3(H)_6(PPh_3)_6(tmdp)_3](PF_6)_3 \bullet 3Me_2CO$ (4). Their structures and properties were characterized by IR, ¹H NMR and a single crystal X-ray analysis. In all the Rh hydrido complexes, the Rh atom is coordinated by two PPh₃ ligands in the trans-position and two nitrogen ligands in the cis-position. The remaining sites are occupied by two hydride atoms to form a saturated 18-electron framework in a slightly distorted octahedral geometry. Based on structural studies in solution and in the solid state, it was demonstrated that di- and trinuclear Ir hydrido complexes with bidentate nitrogen ligands were selectively produced depending on the structural feature of bridging ligands.

Keywords: Iridium complexes, Hydrido complexes, Dinuclear complexes, Trinuclear complexes, Bidentate nitrogen ligands, Crystal structures, IR spectra, ¹H NMR spectra

1. 緒言

近年、結晶工学の分野において合目 的な固体構造の構築は触媒作用¹⁾、非線 形工学²⁾、分子磁性化合物³⁾、電気伝導性 化合物4)、分子認識5)など高い機能を有す る無機ー有機複合材料と関連して極めて 興味深く、エキサイティングな研究分野 の一つとなっている^{6,7)}。様々な次元性や サイズ、空孔、形状を有するナノ配位高 分子錯体は有機配位子の立体構造と金属 イオンの配位構造の選択によって産出さ れ^{8,9}、これまで一次元、二次元、三次元 構造を有する配位高分子錯体を構築する ためもっとも簡単な連結配位子としてピ ラジンや4.4'-ビピリジンならびにそれら の類縁化合物に代表される二座窒素配位 子が用いられてきた。ところでRhやIrの ヒドリド錯体 [M(H),(PPh₃),(solvent),] ClO₄ (M=Rh, Ir)は極めて活性な触媒作 用を有することが知られており¹⁰⁻¹²⁾、ま た含窒素複素環式配位子を有するRhお よびIr錯体も興味深い触媒作用を有する ことから興味が持たれている13。それゆ え、もしこのような高い反応性を有する RhあるいはIrの金属サイトを二座窒素配 位子を用いて連結することができた場合、 集積サイトの共同効果も相まってこれま でにない興味深い構造や優れた反応性を 発現することが期待される。しかしなが らこれまで二座窒素配位子を用いて構築 されたRhおよびIrの配位高分子錯体はほ とんどなく¹⁴⁾、その構造および性質が明 らかではないのが現状である。

このような観点に基づきこれまで 我々はRhおよびIrヒドリド錯体[M(H)₂ (PPh₃)₂(EtOH)₂]ClO₄ (M=Rh, Ir)と、ピラ ジン(pyz)および4,4'-ビピリジン類縁化 合物の反応を行ない、その構造ならびに 性質を系統的に明らかにしてきた¹⁵⁾。そ の結果、その生成過程において合成溶媒

ならびに窒素橋かけ配位子の立体構造が 大きく関連していることを見出した。例 えば[Rh(H),(PPh,),(EtOH),]ClO4 錯体は CH,Cl,中において水素の還元的脱離を 伴って二核Rh錯体 [Rh₂(PPh₃)₂{(η^{6} -C₆H₅) Ph,P}],(ClO₄),]•6CH,Cl,を生成し、 [Rh(H),(PPh3),(EtOH),]ClO4とpyzとの反 応においてMe₂CO中では二核Rhヒドリ ド 錯 体 [Rh₂(H)₂(PPh₃)₂(Me₂CO)₂(pyz)] (ClO₄),を与えるのに対し、CH₂Cl₂中で は三核Rh 錯体 $[Rh_3(PPh_3)_6(pyz)_3](ClO_4)_3$ を生成し、またCH,Cl,中においてより 長いスペーサ部分を有する4.4'-ジメチエ ンジピリジル(tmdp)と $[Rh(H)_{2}(PPh_{3})_{2}]$ (EtOH)。]ClO₄の反応では二重に橋かけし た二核Rhヒドリド錯体[Rh,(H),(PPh,), (tmdp)₂](ClO₄)₂を与え、溶媒選択的にま た配位子の立体構造選択的に化合物が生 成することを実証した¹⁵⁾。同様にIrヒド リド錯体 [Ir(H)₂(PPh₃)₂(EtOH)₂]ClO₄と pyzおよびdpdsとのCH,Cl,中における 反応についてもそれぞれ一重に橋かけし た二核Rhヒドリド錯体 $[Ir_2(H)_2(PPh_3)_2]$ (Me₂CO)₂(pyz)](ClO₄)₂ならびに二重に橋 かけした二核Irヒドリド錯体[Rh₂(H)₂ (PPh₃)₂(dpds)₂](ClO₄)₂が生成することが 示された¹⁵⁾が、これらの研究については まだ端緒についたばかりである。

本研究ではScheme 1に従い、Irヒド リド錯体[Ir(H)₂(PPh₃)₂(EtOH)₂]X (X=PF₆, BF₄)と二座窒素配位子として3,6-ジ-2-ピ リジル-1,2,4,5-テトレジン(dpt)、1,2-ビ ス(4-ピリジル)エチレン(bpe)、4,4'-ピリ ジルジスルフィド(dps)および4,4'-トリ メチレンジピリジン(tmdp)との反応を 試み、これら反応生成物をIR,¹H NMR 法および単結晶X線構造解析より特徴付 けた。

2. 実験

2.1. 試薬

アセトンは和光純薬工業株式会社の 特級試薬を炭酸カリウムを用いて脱水し た後、蒸留したものを使用した。メタノ ールおよびエタノールは和光純薬工業株 式会社の特級試薬をマグネシウムメチラ ート(脱水剤)を用いて脱水した後、蒸留 したものを使用した。クロロホルムおよ びペンタンは和光純薬工業株式会社の特 級試薬を水素化カルシウムを用いて脱水 した後、蒸留したものを使用した。三塩 化イリジウム三水和物はジョンソン・マ ッセイの試薬をそのまま使用した。1,5-シクロオクタジエン(cod)は東京化成工 業株式会社の試薬をそのまま使用した。 ヘキサフルオロリン酸銀、テトラフルオ ロホウ酸銀、トリフェニルフォスフィン (PPh₃)、3,6-ジ-2-ピリジル-1,2,4,5-テトレ ジン(dpt)、1,2-ビス(4-ピリジル)エチレ ン(bpe)、4.4'-ピリジルジスルフィド(dps) および4,4'-トリメチレンジピリジン (tmdp)はアルドリッチ社の試薬をその まま用いた。重水素化溶媒はメルク社の 試薬をそのまま使用した。水素および純 アルゴンガス(純度99.999%以上)は日本 酸素株式会社のものを使用した。すべて の実験はアルゴン雰囲気下、通常のシュ レンク法により行なった。

2.2. 前駆体Ir錯体の合成

2.2.1. $[Ir_2Cl_2(cod)_2]^{16}$

アルゴン雰囲気下、100mlの三つロフ ラスコ中においてIrCl₃・3H₂O (2g, 5.7 mmol)、95% EtOH (34ml)、蒸留水 (17ml)およびcod (6ml)を24時間還流し 褐色沈殿を得た。反応溶液を室温まで冷 却し反応生成物をろ別し、氷冷したメタ ノールで洗浄した後、室温で8時間減圧 乾燥することより目的物を得た。 IR (KBr): 2978, 2934, 2909, 2829, 1471, 1446, 1427cm⁻¹.

2.2.2. $[Ir(cod)(PPh_3)_2]X (X=BF_4, PF_6)^{17-19}$

[Ir(cod)(PPh₃)₂]BF₄の合成は[Ir₂Cl₂ (cod)₂] (134.3mg, 0.2mmol)のEtOH溶液 (2ml)にAgBF₄ (79mg, 0.4mmol)のEtOH 溶液(1ml)を加え15分間撹拌し、生成し た AgClをろ 別 した後、ろ液に PPh₃ (202mg, 0.8mmol)を加え赤色沈殿を得た。 反応生成物をろ別した後、ベンゼンおよ びジエチルエーテルを用いて洗浄し室温 にて 減 圧 乾 燥 した。同様に [Ir(cod) (PPh₃)₂]PF₆の合成は AgPF₆ (101mg, 0.4mmol)を用いて行った。IR (KBr): [Ir(cod)(PPh₃)₂]BF₄ 3055, 2918, 2887, 1481, 1435, 1309, 1188, 850cm⁻¹; [Ir(cod) (PPh₃)₂]PF₆ 3055, 2920, 2882, 1479, 1435, 1309, 1055cm⁻¹.

2.2.3. $[Ir(H)_2(PPh_3)_2(Me_2CO)_2]X$ (X=BF₄, PF₆)^{20,21)}

[Ir(H),(PPh₃),(Me₂CO),]BF₄の合成は $[Ir(cod)(PPh_3)_2]BF_4$ (0.57g, 0.56mmol) OMe₂CO 溶液 (20ml) に室温で水素ガス (1atm)を撹拌しながら通気し無色溶液を 得た。反応溶液を全量が約5mlまで濃縮 した後、石油エーテルを加え冷蔵庫で一 昼夜静置し無色結晶を得た。反応生成物 をろ別し、石油エーテルで洗浄後、室温 にて減圧乾燥した。 [Ir(H),(PPh₃), (Me,CO), PF,の合成は同様に[Ir(cod) (PPh₃), PF₆を用いて行った。[Ir(H), $(PPh_3)_2(Me_2CO)_2]BF_4$: ¹H NMR $(CD_2Cl_2,$ 23 , ppm): 7.44(PPh₃), -27.8(Ir-H). IR (KBr) 2230, 1661, 1094cm⁻¹. $[Ir(H)_2(PPh_3)_2]$ $(Me_2CO)_2$]PF₆: ¹H NMR (CD₃)₂CO), 23 ppm): 7.43(PPh₃), -27.86(Ir-H). IR (KBr) 2258, 1661, 840cm⁻¹.

2.3. 錯体の合成

2.3.1. [Ir₂(H)₄(PPh₃)₄(dpt)₂](PF₆)₂ (1).

アルゴン雰囲気下、[Ir(H)₂(PPh₃)₂ (Me₂CO)₂]PF₆ (9.2mg, 1.0mmol)のCDCl₃ 溶液 (5ml) と dpt (2.4mg, 1.0mmol)の CDCl₃溶液(5ml)を反応させ、生成した 黒紫色溶液をガラス管にペンタンと共に 封入し、室温で3日静置することにより 黒色結晶を得た。

2.3.2. [Ir₂(H)₄(PPh₃)₄(bpe)₂](BF₄)₂ (2).

アルゴン雰囲気下、[Ir(H)₂(PPh₃)₂ (Me₂CO)₂]BF₄ (27.7mg, 3.0mmol)の Me₂CO溶液 (5ml)とbpe (5.5mg, 3mmol) のMe₂CO溶液 (5ml)を反応させ、生成 した反応溶液をガラス管にペンタンと共 に封入し、室温で3日静置することによ り黄色結晶を得た。

2.3.3. $[Ir_2(H)_4(PPh_3)_4(dps)_2](PF_6)_2$ (3).

アルゴン雰囲気下、 [Ir(H)₂(PPh₃)₂ (Me₂CO)₂]PF₆ (49.0mg, 0.05mmol)とdps (9.4mg, 0.05mmol)のそれぞれCHCl₃溶 液 (5ml)を混合し15分間攪拌した後、ろ 別し淡黄色溶液を得た。この溶液をガラ ス管に入れ界面ができるようにペンタン を静かに加え封管した。室温で1日間静 置することより無色柱状結晶を得た。収 量: 45.7mg (46 %). IR (KBr): 2168, 1588, 1434, 837cm⁻¹. ¹H NMR (CDCl₃, 23 , ppm): 7.38, 7.21 (PPh₃), 7.80, 6.58 (dps), -21.65 (Ir-H).

2.3.4. $[Ir_{3}(H)_{6}(PPh_{3})_{6}(tmdp)_{3}](PF_{6})_{3} \cdot 3Me_{2}CO$ (4).

アルゴン雰囲気下、[Ir(H)₂(PPh₃)₂ (Me₂CO)₂]PF₆ (29.4mg, 0.03mmol) と tmdp (5.6mg, 0.03mmol)のMe₂CO溶液 (5ml)をそれぞれ混合し15分間攪拌した 後、ろ別し無色溶液を得た。この溶液を ペンタン共にガラス管に封管し、室温で 3週間静置することで[Ir₃(H)₆(PPh₃)₆ (tmdp)](PF₆)₃•3Me₂COの無色柱状結晶 を得た。IR (KBr): 3057, 2949, 2160, 1618, 1485, 1435, 837cm^{-1. 1}H NMR ((CD₃)₂CO), 23 , ppm): 7.29, 7.20 (PPh₃), 7.76, 6.57, 2.00 (tmdp), -21.54 (Ir-H). 元素分析: 実 測値 C 55.58, H 4.84, N 2.32; 計算値 C 55.76, H 4.68, N 2.50.

2.4. 物理化学的测定

赤外線吸収スペクトルの測定は日本 分光FT/IR-8000およびFT/IR-430を用い、 KBr錠剤法により行った。¹H NMRスペ クトルの測定はJEOL GSX-270 FT-NMR spectrometerを用い、溶媒には重水素化 アセトン(重水素化率99.8%)、重水素化 クロロホルム(重水素化率99.8%)、重水 素化ジクロロメタン(重水素化率99.6%) を用い、すべての化学シフトはTMSを 内部基準として用いた。紫外・可視吸収 スペクトルはSHIMAZU UV-2450を用い て室温にて測定した。元素分析は東京都 立大学元素分析室に依頼した。錯体4の 単結晶X線構造解析はRigaku/MSC

3. 結果および考察

3.1. $[Ir_2(H)_4(PPh_3)_4(dpt)_2](PF_6)_2$ (1).

得られた黒色結晶のIRスペクトルを 測定したところ前駆体である[Ir(H)₂ (Me₂CO)₂ (PPh₃)₂]PF₆に見られる2249cm⁻¹ (v(Ir-H))と844cm⁻¹ (v(PF₆))の吸収が錯体 1では2158cm⁻¹と841cm⁻¹にシフトし、 Me₂COに起因する1666cm⁻¹ (v(C=O))が 錯体1では消失した。さらに遊離のdpt に起因する3061cm⁻¹ (v(C-H))、1442 ~ 1390cm⁻¹ (v(C=C,C=N))の吸収がそれぞ れ錯体1では3053cm⁻¹、1481 ~ 1408cm⁻¹ にシフトして見られることよりIrへの dptならびにヒドリドの配位を確認した。 この結晶は微結晶でありX線構造解析に は至らなかった。

3.2. $[Ir_2(H)_4(PPh_3)_4(bpe)_2](BF_4)_2$ (2).

錯体1と同様、得られた黄色結晶のIR スペクトルを測定したところ前駆体であ る[Ir(H)₂(Me₂CO)₂(PPh₃)₂]BF₄に見られる 2230cm⁻¹ (v(Ir-H)) ≥ 1056, 1095cm⁻¹ (v(BF₄))の吸収が錯体2では2165cm⁻¹と 1093, 1058cm⁻¹にシフトし、Me,COに起 因する1661cm⁻¹ (v(C=O))の吸収が錯体2 では消失した。また遊離のbpeに起因す る 3048, 3027cm⁻¹ (v(C-H))、 1594. 1411cm⁻¹ (v(C=C,C=N))の吸収がそれぞ れ錯体2では3053、1610、1434cm⁻¹にシフ トして見られることよりIrへのbpeなら びにヒドリドの配位を確認した。この結 晶についてもX線構造解析を試みたが分 子構造を得るには至らなかった。しかし ながらこれまでの我々の研究から同様の 二座窒素配位子ジ(4-ピリジル) スルフィ ド(dpds)を用いた場合、二重に橋かけし た 二 核 Ir ヒ ド リ ド 錯 体 [Ir₂(H)₄(PPh₃)₄ (dpds)₂](BF₄)₂・3CH₂Cl₂・H₂Oが生成する

Merury CCD (光源: Mo-Kα線(λ=0.71069 Å))を用いて反射強度を測定し、構造解 析および精密化はX線構造解析プログラ ムteXsanを用いて行った。

ことを見出しており¹⁵⁾、おそらく錯体2 も同様の二核構造を有しているものと考 えられる。

3.3. $[Ir_2(H)_4(PPh_3)_4(dps)_2](PF_6)_2$ (3).

これまで我々は近接したN・・・N間距 離を有する二座窒素配位子であるピラジ ン(pyz)を用いた場合、一重に橋かけさ れた二核Irヒドリド錯体[Ir₂(H)₄(PPh₃)₄ (Me₂CO)₂(pyz)](BF₄)₂・3CH₂Cl₂が生成す ることを明らかにしている¹⁵。ここでは さらにスペーサー部分にS原子を有し pyzより長いN・・・N間距離を有する4,4'-ジピリジルスルフィド(dps)を用いた場 合どのような錯体が生成するのか検討し た。

得られた無色結晶のIRスペクトルを 測定したところ前駆体である[Ir(H)₂ (PPh₃)₂(Me₂CO)₂]PF₆に見られる2258cm⁻¹ (v(Ir-H))と840cm⁻¹ (v(PF₆))の吸収が錯体 **3**ではそれぞれ2168cm⁻¹と837cm⁻¹にシフ トし、またMe₂COに起因する1661cm⁻¹ (v(C=O))も錯体**3**では消失して観測され た。さらに遊離のdpsに起因する3065, 3004cm⁻¹(v(C-H))、1556,1406cm⁻¹(v(C=C, C=N))の吸収がそれぞれ錯体**3**では3055, 2854cm⁻¹、1588,1434cm⁻¹へとシフトし て見られることよりIrへのdpsならびに ヒドリドの配位を確認した。

またこの無色結晶の¹H NMRスペクト ルを測定したところ、遊離のdpsの8.55, 7.25ppmに見られるピリジル基のシグナ ルが錯体3では7.80, 6.58ppmにシフトし、 また前駆体である [Ir(H)₂(Me₂CO)₂ (PPh₃)₂]PF₆のPPh₃のフェニル基のシグナ ル(7.44ppm)が錯体3では7.30 ~ 7.21ppm にシフトして観測され、さらに- 27.68ppmのIr-Hのシグナルも錯体3では -21.65ppmに大きく低磁場シフトして観 測されたことより溶液中においてもIrdps-ヒドリド錯体の生成を確認した。

この結晶の詳細な構造を明らかにす るためにX線構造解析を試みたが分子構 造を得るには至らなかった。しかしなが らこれまでの我々の研究から先に述べた ように剛直で近接したN・・・N間距離を 有するpyzを配位子として用いた場合、 ー重に橋かけした二核Rhヒドリド錯体 $[Ir_2(H)_2(PPh_3)_2(Me_2CO)_2(pyz)](ClO_4)_2$ を 与えるの対し、長いスペーサ部分を有す るdpdsを用いた場合、二重に橋かけさ れた二核Irヒドリド錯体[Ir₂(H)₄(PPh₃)₄ (dpds),](BF₄), • 3CH₂Cl₂•H₂Oが生成する ことを見出しており¹⁵、この場合も実際 分子モデルを組んだ場合最も安定な構造 として2つのIrが2つのdpsにより二重に 橋かけされた二核錯体を形成しているも のと考えられる。

これまでdpsを配位子とする金属錯体 の合成はほとんど報告されておらず、 我々が知る限リー次元構造を有する [Ag₃(NO₃)₃(dps)₂•2H₂O]²²⁾ や [Co(dps)₂ (NCS)₂]_n²³⁾、二次元構造を有する [Co(dps)₂Cl₂]_n²³⁾、[Ag(dps)₂•BF₄]_n²⁴⁾が報 告されているのみであり、錯体3は始め てのdpsを配位子とする二核イリジウム ヒドリド錯体である。

3.4. [Ir₃(H)₆(PPh₃)₆(tmdp)₃](PF₆)₃ (4).

4,4'-ジピリジルスルフィド(dps)を配 位子とした場合二核Irヒドリド錯体3を、 またdpdsを配位子とする二核Irヒドリド 錯体[Ir₂(H)₄(PPh₃)₄(dpds)₂](BF₄)₂・3CH₂-Cl₂・H₂O¹⁵⁾に比べ、さらに長いスペーサ ー部分を有する4,4'-トリメチレンジピラ ジン(tmdp)を用いた場合、どのような 錯体を生成するのか次に検討した。

得られた無色結晶のIRスペクトルを 測定したところ、前駆体である[Ir(H)₂ (PPh₃)₂(Me₂CO)₂]PF₆に見られる2258cm⁻¹ (v(Ir-H))と840cm⁻¹ (v(PF₆))の吸収が錯体 4では2160cm⁻¹と837cm⁻¹にシフトし、 Me₂COに起因する1661cm⁻¹ (v(C=O))の 吸収が錯体4では消失している。さらに 遊離のtmdpに起因する{2943, 2866cm⁻¹ (v(C-H))}、{1604, 1415cm⁻¹ (v(C=C, C=N))}の吸収がそれぞれ錯体4では{3057, 2949cm⁻¹}、{1618, 1435cm⁻¹}にシフトし て見られることよりIrへのtmdpならび にヒドリドの配位を確認した。

次に無色結晶の¹H NMRスペクトルを CDCl₃溶液中において測定したところ、 遊離のtmdpの8.52,7.10ppmに見られる ピリジル基のシグナルが錯体4ではそれ ぞれ7.75,6.56ppmへと低磁場シフトし、 前駆体である[Ir(H)₂(Me₂CO)₂(PPh₃)₂]PF₆ のフェニル基のシグナル(7.44ppm)が 7.20ppmへ、さらにヒドリド錯体に特徴 的な Ir-H のシグナルが 錯 体 4 では -27.68ppmから-21.54ppm (J_{P-H}=16.2Hz)に 約6.14ppm低磁場シフトして観測される ことより溶液中においてもIrへのtmdp ならびにヒドリドの配位を確認した。

無色柱状結晶4の単結晶X線構造解析 を試みた。この結晶の結晶学的パラメー タはa=21.579, b=20.261, c=35.492Å, $\beta=$ 104.151°, V=15046.681Å³と極めて*c*軸が 長く高角側まで精密な反射強度を測定す ることが困難であり現在のところ完全な 精密化を終わるには至っていない。Fig.1 に錯体4のX線構造を示した。構造を見 やすくするためにIrに配位したPPh。のフ ェニル基は省略し、IRスペクトルの結果 より支持されるヒドリド原子は計算より 付け加えた。各々のIr原子には2つの水 素原子、2つのPPh₃のリン原子ならびに 2つのtmdpの窒素原子が配位し少し歪ん だ六配位八面体構造を有している。この 錯体において最も興味深いことは各々の Ir原子がtmdpにより橋かけされること より約12.43 X 12.20 X 12.62ÅのIr・・・Ir 間距離を有するIr。コアを形成し、対ア ニオンであるPF。が三核Ir3コアの上下に PPh₃のフェニル基に囲まれるように取 り込まれていることである。

tmdp配位子はこれまで有用な橋かけ

配位子として良く知られており、例えば $[Cu_5(tmdp)_8(SO_4)_4(EtOH)(H_2O)_5](SO_4) \bullet$ $EtOH \bullet 25.5H_2O^{25}$, $[Cu(hfac)_2(tmdp)]$ (hfacac=hexafluoroacetylacetonate)²⁶⁾ 、 $[Cu(hfacac)_2(tmdp)]^{27}$ [Ag(tmdp)] $(CF_3SO_3) \bullet EtOH^{28}$ [Ag(tmdp)](CF₃- SO_{3}^{28} , $[Ag_{2}(tmdp)_{4}](CF_{3}SO_{3})_{2} \bullet tmdp^{28}$, [ZnMe2(tmdp)]29)のような配位高分子錯 体が報告され、また極く数例のRh錯体 が報告されている^{15,30,31)}。しかしながら 私たちが知る限りIr錯体ついてはその報 告例がなく、錯体4は始めてのtmdpを配 位子とする三核イリジウムヒドリド錯体 である。

これまでの我々の一連の研究からも っとも短いN・・・N間距離を有するピラ ジンを用いた場合、一重の橋かけ配位子 を 有 す る 二 核 錯 体 [Ir₂(H)₄(PPh₃)₄ (Me₂CO)₂(pyz)](BF₄)₂・3CH₂Cl₂を生成し、 N・・・N間距離が長くなったdpdsを用い た場合、二重の橋かけ配位子を有する二 核構造を有する [Ir₂(H)₄(PPh₃)₄(dpds)₂] $(BF_4)_2 \cdot 3CH_2Cl_2 \cdot H_2Oを生成することを$ 見出しており¹⁵⁾、さらに本研究において柔軟でより長いN • • • N間距離を有するtmdpを用いた場合、立体構造的に二核構造を取ることが困難となり正三角形な $<math>Ir_3$ コアを有する三核錯体を生成するこ とを見出した。この結果はtmdp配位子 を用いて同族元素であるRhヒドリド錯 体 $[Ir(H)_2(PPh_3)_2(Me_2CO)_2]CIO_4 と反応さ$ せた場合、Rhに配位したヒドリドが還 $元的脱離し二核錯体 <math>[Rh_2(PPh_3)_4(tmdp)_2]$ $(CIO_4)_2 \cdot 4MeCOCHMe_2$ が生成すること と¹⁵⁾、大きく異なり興味が持たれる。

以上、本研究ではIrヒドリド錯体[Ir (H)₂(PPh₃)₂(EtOH)₂]X(X=PF₆, BF₄)と二座 窒素配位子の配位子の構造選択的な反応 を実証した。このことは今後Irヒドリド 錯体を含む機能性配位高分子錯体を合目 的に構築する上で極めて有用な知見であ る。

Fig.1. Crystal Structure of [lr₃(H)₆(PPh₃)₆(tmdp)₃](PF₆)₃

謝辞

本研究を遂行するにあたり近畿大学 大学院総合理工学研究科森田智典君なら びに理工学部化学科松岡昭博君にお世話 になりました。またこの研究は一部文部 科学省科学研究費補助金ならびに近畿大 学学内助成金により行ないました。

文献

- 1) K. Maruoka, N. Murase and H. Yamamoto, *J. Org. Chem.*, **58**, 2938 (1993).
- 2) C. Chen and K. S. Suslick, *Coord. Chem. Rev.*, **128**, 293 (1993) and references therein.
- H. O. Stumpf, L. Ouahab, Y. Pei, D. Grandjean and O. Kahn, Science, 261, 447 (1993); F. Lloret, G. D. Munno, M. Julve, J. Cano, R. Ruiz and A. Caneschi, Angew. Chem., Int. Ed. Engl., 37, 135 (1998); J. A. Real, E. Andres, M. C. Munoz, M. Julve, T. Granier, A. Bousseksou and F. Varret, Science, 268, 265 (1995).
- B. F. Hoskins and R. Robson, J. Am. Chem. Soc., 112, 1546 (1990); C. L. Bowes and G. A. Ogin, Adv. Mater., 13 (1996).
- M. Kondo, T. Yoshitomi, K. Seki, H. Matsuzaka and S. Kitagawa, Angew. Chem., Int. Ed. Engl., 36, 1725 (1997);
 D. Venkataraman, G. F. Gardner, S. Lee and J. S. Moore, J. Am. Chem. Soc., 117, 11600 (1995).
- 6) E. C. Constable, Adv. Inorg. Chem., (1989); " **34**, Supramolecular 1 *Chemistry*"; eds. by V. Balzani and L. De Cola, Kluwer, Holland, 1992; L. Fabbrizzi and A. Poggi, "Transitional Metals in Supuramolecluar Chemistry", eds. by L. Fabbrizzi and A. Poggi, Kluwer Academic Publishers, The Netherlands, 1994; F. Vögtle "Supramolecular Chemistry", Wiley, Chichester, 1993; "Comprehensive Supramolecular Chemistry", ed. by J. -M. Lehn, Pergamon Press, Oxford, Vol. 9, 1995; E. C. Constable, "Progress in Inorganic Chemistry", ed.

K. Karlin, Wiley, New York, Vol. 2, 1994; L. -M. Lehn, p92. "In Coordination **Perspectives** in *Chemistry*"; eds. by A. F. Williams, C. Floriani and A. E. Merbach, VHCA, Basel, 1992; R. Robson, B. F. Abrahams, S. R. Batten, R. W. Gable, F. Hoskin and J. Liu. Β. "Supramolecular Architecture", ed. by T. Bein, ACS, Washington, DC, Ch. 19, p256, 1992.

- 7) M. Munakata, L. -P. Wu and T. Kuroda-Sowa, Bull. Chem. Soc. Jpn., 70, 1727 (1997); M. Munakata, L. -P. Wu and T. Kuroda-Sowa, Adv. Inorg. Chem., 46, 173 (1999); S. Kitagawa and M. Munakata, Trends Inorg. *Chem.*, 3 (1993); S. Kitagawa and M. Kondo, Bull. Chem. Soc. Jpn., 71, 1739 (1998); P. J. Hagrman, D. Hagrman and J. Zubieta, Angew. Chem., Int. Ed., 38, 2638 (1999); A. J. Blake, N. R. Champness, P. Hubberstey, W. -S. Li, M. A. Withersby and M. Schröder, Coord. Chem. Rev., 183, 117 (1999); S. R. Batten and R. Robson, Angew. Chem., Int. Ed., 37, 1460 (1998).
- 8) R. Robson, *in Comprehensive* Supramolecular Chemistry, Vol. 6, eds. by J. L. Atowood, J. E. D. Davies, D. D. MacNicol, F. Vögtle and J. -M. Lehn, Pergamon, New York, p733, 1996.
- 9) J. M. Lehn, Pure Appl. Chem., 66, 1961 (1994).
- 10) W. S. Knowles, M. J. Sabacky and B. D. Vineyard, Adv. Chem. Ser., 132, 274 (1974) and references therein; L. Marko and B. Heil, Catal. Rev., 8, 269 (1973) and references therein; I. D. Gridnev, N. Higashi, K. Asakura and T. Imamoto, J. Am. Chem. Soc., 122, 7183 (2000); C. Bianchini, D. Fabbri, S. Gladiali, A. Meli, W. Phol and F. Vizza, Organometallics, 15, 4604 (1996); B. Hauger, K. G. Caulton, J. Organomet. Chem., 450, 253 (1993).
- 11) R. R. Schrock and J. A. Osborn, J. Am. Chem. Soc., 98, 2134 and 4450

(1976); R. R. Schrock and J. A. Osborn, *J. Am. Chem. Soc.*, **93**, 2397 (1971).

- 12) O. W. Howarth, C. H. McAteer, P. Moore and G. E. Morris, J. Chem. Soc. Dalton Trans., 1481 (1981); R. H. Crabtree, P. C. Demou, D. Eden, J. M. Mihelcic, C. A. Parnell, J. M. Quirk and G. E. Morris, J. Am. Chem. Soc., 104, 6994 (1982); J. R. Shapley, R. R. Schrock and J. A. Osborn, J. Am. Chem. Soc., 91, 2816 (1969); X. L. Luo, G. K. Schulte and R. H. Crabtree, Inorg. Chem., **29**. 682 (1990); R. H. Crabtree, G. G. Hlatky, C. P. Parnell, B. E. Segmüller and R. J. Uriarte, Inorg. Chem., 23, 354 (1984).
- 13) P. A. Chaloner, M. A. Esteruelas, F. Joó and L. A. Oro, *"Homogeneous Hydrogenation"*, Kluwer, Dordrecht, 1994.
- 14) M. Maekawa, K. Sugimoto, T. Kuroda-Sowa, Y. Suenaga and M. Munakata, J. Chem. Soc., Dalton Trans., 4357 (1999).
- X. -Y. Yu, M. Maekawa, M. Kondo, S. Kitagawa and G. -X. Jin, *Chem. Lett.*, 168 (2001); X. -Y. Yu, M. Maekawa, T. Morita, H. -C. Chang, S. Kitagawa and G. -X. Jin, *Bull. Chem. Soc. Jpn.*, **75**, 267 (2002); X. -Y. Yu, M. Maekawa, T. Morita, H. -C. Chang, S. Kitagawa and G. -X. Jin, *Polyhedron*, **21**, 1613 (2002).
- 16) J. L. Herde, J. C. Lambert, and C. V. Senoff, *Inorg. Synth.*, 15,18, 1974.
- 17) W. A. Fordyce, G. A. Crosby, *Inorg. Chem.*, **21**, 1455 (1982).

- 18) M. Green, T. A. Kuc, S. H. Taylor J. Chem. Soc., A, 2334 (1971).
- 19) L. M. Haines; E. Singleton *J. Chem. Soc., Dalton Trans.*, 1891 (1972).
- 20) O. W. Howarth, C. H. McAteer, P. M. Moor and E. George, *J. Chem. Soc., Dalton Trans.*, 1481 (1981).
- 21) R. H. Crabtree, P. C. Demou, D. Eden, J. M. Mihelcic, M. Jean, C. A. Parnell, J. M. Quirk and G. E. Morris, *J. Chem. Soc.*, **104**, 6994 (1982).
- 22) O. -S. Jung, S. -H. Park, C. -H. Park, J. -K. Park, *Chem. Lett.*, 923 (1999).
- 23) O. -S. Jung, S. -H. Park, D. -C. Kim, and K. -M. Kim, *Inorg. Chem.*, **37**, 610, (1998).
- 24) O. -S. Jung, S. -H. Park, Y. -A. Lee and U. Lee, *Chem. Lett.*, 1012 (2000).
- 25) L. Carlucci, G. Ciani, M. Moret, D. M. Proserpio and S. Rizzato, *Angew. Chem., Int. Ed. Engl.*, **112**, 1566 (2000).
- 26) M. J. Plater, M. R. St. J. Foreman and A. M. Z. Slawin, *Inorg. Chim. Acta*, **303**, 132 (2000).
- 27) Y. B. Dong, M. D. Smith, R. C. Layland and H. C. zur Loye, *Inorg. Chem.*, **38**, 5027 (1999).
- 28) L. Carlucci, G. Ciani, D. W. v. Gundenberg and D. M. Proserpio, *Inorg. Chem.*, **36**, 3812 (1997).
- 29) N. L. Pickett, P. Lightfoot and D. J. Cole-Hamilton, *Adv. Mater. Opt. Electron.*, 7, 23 (1997).
- 30) Y. H. Liu, J. E. Anderson and K. M. Kadish, *Inorg. Chem.*, **27**, 2320 (1988).
- 31) A. L. Balch and R. D. Copper, J. Organomet. Chem., 169, 97 (1979).