固体高分子形燃料電池の水素循環系における不純物の濃縮挙動^{*} -He, №, H₂S, NH₃の濃縮挙動について-

Accumulation of Impurities in Hydrogen Circulation System of PEFC - Accumulation of He, N₂, H₂S, and NH₃-

松田 佳之	* ²	橋正	好行 ^{*2}	今村	大地 ^{*3}
Yoshiyuki MATS	UDA Yosh	iyuki HA	ASHIMASA	Daichi IN	IAMURA
	赤井 泉明 Motoaki AKAI	*3	渡辺 Shogo WA	正五 ^{*2} TANABE	

Abstract

The accumulation of impurities such as nitrogen (N_2), helium (He), hydrogen sulfide (H₂S), and ammonia (NH₃) was investigated in the hydrogen circulation system of a fuel cell. A single cell was operated using a hydrogen fuel containing an impurity, and gas from the hydrogen circulation system was sampled and analyzed. It was found that helium accumulation was suppressed because of permeation through the electrolyte membrane from the anode to the cathode side. N₂ was accumulated though it wasn't contained in the hydrogen fuel. N₂ accumulation was caused by permeation from the cathode side. H₂S wasn't accumulated due to adsorption on the catalyst. NH₃ wasn't accumulated either because of absorption in the membrane or dissolution in water. It will be necessary to reflect the present findings on the accumulation of various impurities into the ISO hydrogen quality standard for fuel cell vehicles.

1. はじめに

燃料中の不純物は,燃料電池の発電性能に影響 を与える可能性がある一方で,過度の品質要求は 燃料コストの上昇につながることが予想される. 当研究所ではJARI標準セルを用い,水素中不純物 の発電性能への影響を評価してきた^{1),2)}.この結果 をもとに作成された燃料電池自動車用水素の品質 規格案はISO/TC197/WG12(水素燃料仕様)にお いて議論され,2008年2月にTS(Technical Specification:技術仕様書)として発行された³⁾. 現在は,IS(International Standard:国際規格)策 定に向けた活動が行われている. 品質規格案における水素中不純物の許容濃度 は、単セルによる発電試験結果をもとに、被毒回 復技術や分析手法を考慮して決定している.この 試験は単セル出口の燃料をそのまま系外へ排出す る開放系で行った.これに対して自動車用の燃料 電池システムを想定した場合は、反応に利用され なかった水素は再びセル入口へ戻される水素循環 系となる.燃料中に不純物が含まれる場合、不純 物は水素循環系で濃縮する可能性がある.TSはす べての不純物が最大で500倍まで濃縮すると仮定 して作成されている.

これまでの研究からCH4は濃縮し,COは濃縮し ないことを明らかにしてきた⁴⁾.不純物の濃縮挙 動は種類によって異なると考えられる.そこで燃 料中に含まれる可能性がある他の不純物につい て,水素循環系での濃縮挙動を調査した.

^{*1} 原稿受理 2008年6月6日

^{*2 (}財日本自動車研究所 FC・EVセンター

^{*3 (}財日本自動車研究所 FC・EVセンター 博士 (工学)

2. 試験方法

2.1 選定した不純物

今回の試験で選定した不純物と、その分析方法 をTable 1に示す.

Table 1 Inpunties in nyurogen and analysis metho	Table 1	Impurities	in	hydrogen	and	analysis	method
--	---------	------------	----	----------	-----	----------	--------

Impurities	Analysis method	Lower detection limit
Helium (He)	Direct-MS(Mass Spectroscopy)	200ppm
Nitrogen (N ₂)	GC-MS(Mass Spectroscopy)	80ppm
Hydrogen Sulfide (H ₂ S)	GC-SCD(Sulfur Chemiluminescence Detector) GC-FPD(Flame Photometric Detector)	0.1ppm
Ammonia (NH ₃)	GC-FTD(Flame Thermionic Detector)	2ppm

HeやN₂など燃料電池反応に不活性な成分のTSに おける許容濃度は、合計で100ppmとなっている. これらは濃縮すると、循環系の水素分圧を低下さ せる.これを防ぐためにパージを行うが、パージ を頻繁に行うことは燃費の低下につながる.Heは 水素を製造する際、原料である天然ガス中に含ま れている.日本では、天然ガスを輸送する際に液 化するためHeが分離されるが、欧米のようにパイ プラインで輸送する場合は天然ガス中にHeが含ま れる.水素を製造するときに、このHeを分離する ことは困難なため、HeがTSの許容濃度よりも多く 含まれるおそれがある.N₂は大気中の主要成分で あることから容易に混入することが予想される. また、燃料電池内でカソードから電解質膜を透過 する影響も考えられる.

H₂S,NH₃は微量でも発電性能が低下する.特に H₂Sは供給を止めても電圧が回復しない,不可逆 な性能低下が起こることが知られている^{1),2)}.

2.2 試験装置

Fig. 1に試験装置の構成を示す.アノードには, 高純度水素(純度99.99999%以上)または不純物 を添加した水素を,カソードには精製空気を,そ れぞれ加湿して単セルに供給し,一定電流密度で 発電させた.アノードにおいて発電に利用されず にセルを通過した燃料は,凝縮器で水分を除去し た後にポンプを用いて,セル入口へ戻した.ポン プ側からの燃料はマスフローコントローラで流量 を制御した.高純度水素あるいは不純物を添加し た水素から供給する燃料は,レギュレータの圧力 を調節して、セルで発電に消費された分だけ系内 に供給される仕組みとした.

Fig. 1 Schematic diagram of single cell test station equipped with hydrogen circulation system

2.3 試験方法

燃料電池単セルにはJARI標準セルを⁵⁾, 膜-電 極接合体は, Table 2に示すPRIMEA[®](ジャパン ゴアテックス(㈱製)を用いた.不純物を添加した 水素による濃縮挙動調査は, Table 3に示す条件で 行った.ここで,

として定義した.

循環系を高純度水素で十分に置換してから,単 セルを発電させた.セル電圧の時間変化率が ⊿V≤1mV/hとなった後に,不純物を添加した水 素に切り替えた.この時の循環系の不純物濃度は, ポンプ吐出側からガスを2時間ごとに採取して測 定した.

Table 2 Specification of MEA

Product	PRIMEA [®] (JAPAN GORE-TEX INC.)		
Catalyst	Pt / Pt (anode / cathode)		
Catalyst loading[mg-Pt/cm ²]	0.4 / 0.4 (anode / cathode)		
Membrane thickness[µm]	30		

Table 3	Operationg	condition	of	single	cell
				~ ~	

Current density [mA/cm ²]	1000
Fuel / Air stoichiometry	4 / 2.5
Cell temperature[°C]	80
Anode/Cathode dew point [°C]	77 / 77
Anode / Cathode pressure outlet	Atmospheric pressure

HeとN₂の循環系での濃度は、それぞれの物質が 触媒吸着性、反応性、膜透過性、水溶性がないと 仮定した以下の式(2)⁴⁾を用いて予測し、実験結果 と比較した.

$$C_n = C_s \frac{V_P + V_L}{V_P} \left\{ 1 - \left(1 - \frac{V_P}{V_C}\right)^n \right\}$$
(2)

 $(C_s: 供給した不純物濃度, V_P: サンプリング量, V_L: サンプリング間 <math>(n \rightarrow n+1 \square)$ での燃料供給量, $V_c: 循環系容積, n: サンプリング回数)$

3. 結果と考察

3.1 Heの濃縮挙動

循環系の試験と同じ電解質膜を用いて、Heの透 過係数を測定した. セル温度80℃,露点77℃の条 件で2.4×10⁻¹⁴ [mol·m/m²·s·Pa] となり,水素 での1.6×10⁻¹⁴ [mol·m/m²·s·Pa] に比べて約1.5 倍大きい結果となった. Heは単原子分子であるこ とから,水素より透過係数が大きいと考えられる.

Heを100ppm添加した水素を用いて発電試験を行ったときのセル電圧変化とHe濃度,および式(2)の式より求めた予測値をFig. 2に示す.Heを添加している間,セル電圧は安定していた.この時の水素循環系におけるHe濃度は徐々に上昇し,60時間後に約0.6%となった.カソードへへリウムが透過しないと仮定して求めた予測値と比較すると,10時間まで濃度は一致したが,それ以降は予測した値よりも小さくなった.循環系の濃度が大きくなるに従い,膜の両側でのHe濃度の差が大きくなるため,カソードへの透過量が次第に大きくなる.そのためHe濃度は,10時間以降は予測値より小さくなったと考えられる.

Fig. 2 Cell voltage and He concentration changes in the hydrogen circulation system

3.2 N2の濃縮挙動

燃料電池では空気をカソードガスとして使用す る.このためカソードとアノードでのN₂分圧の差 が大きく、N₂が電解質膜を透過して循環系で濃縮 することが予想される.そこで高純度水素(純度 99.99999%以上、N₂<0.05ppm)を燃料として発電 試験を行った.セル電圧およびN₂濃度をFig.3に示 す.セル電圧は試験を通して変化がなかった.N₂ 濃度は 60時間で約5%となった.水素中にTSの許 容濃度である100ppmのN₂が含まれる場合に式(2) により濃縮予測を行ったとき、60時間後の濃度は 1%となり、カソードからの透過量に比べ小さい. このことから、N₂の濃縮は主にカソードからの透 過により起こることがわかった.

Fig. 3 Cell voltage and $N_{\rm ^2}$ concentration changes in the hydrogen circulation system

3.3 H₂Sの濃縮挙動

H₂S (1.1ppm) を添加した水素を用いて,発電 試験を行い,循環系での濃縮挙動を評価した.比 較のため,循環系の時と供給速度を0.49 µ mol/hと そろえた開放系でも評価した.下軸を時間(上軸 をH₂S供給量)とした時のセル電圧およびH₂S濃度 を,Fig.4に示す.

Fig. 4 Cell voltage change and H_2S concentration in the hydrogen circulation system, and one way pass

H₂S供給量が約10 µ molまで,循環系,開放系と もにH₂Sは検出下限であった.H₂Sはこの時点まで ほぼ触媒に吸着されているため,循環系で濃縮し ないと考えられる.

H₂S供給量が約10 µ molからは電圧が徐々に低下 し始めた.この点から開放系出口でH₂Sが検出さ れはじめて60時間後に0.2ppmとなり,循環系では H₂S濃度が1.2ppmまで上昇した.循環系では排出 されたH₂Sが再びセル入口へ戻されるため,H₂S濃 度が上昇したと考えられる.循環系で30時間後に 再びH₂S濃度が低下した挙動については,アノー ド電位とH₂Sの飽和吸着量の関係によるものと推 察されるが,本報ではその挙動の詳細な解析は除 外する.

3.4 NH3の濃縮挙動

NH₃ (23.3ppm) を添加した水素を用いて発電試 験を行ったときのセル電圧およびNH-濃度を, Fig. 5 に示す.気相中のNH₃は試験を通して検出されなか った.セル出口のNH4⁺をイオンクロマトグラフで 測定したところ,アノード,カソードの両側から NH4⁺が検出された.その他にもNH₃は水への溶解度 が大きいことや電解質中でNH4⁺として,蓄積する ことが報告⁶⁰ されており,このことからNH3は濃縮 しなかったと考えられる.

Fig. 5 Cell voltage and $NH_{\mbox{\tiny 3}}$ concentration in the hydrogen circulation system

4. まとめ

不純物の濃縮挙動を調査した結果を、これまで に得た結果も含めてTable 4に示す. CH4, N2, He は触媒への吸着や反応性がなく、水にも溶解しな いため、電解質膜の透過性で濃縮の挙動が決まる. Heは電解質膜の透過係数が大きいことから、循環 系での濃度が予測より小さくなった. N2は水素中 にTSの許容濃度だけ含まれる場合より、カソード からN2が透過して濃縮する影響のほうが大きいこ とがわかった. COは濃縮せず,酸化されて生成し たCO₂が濃縮した⁴⁾. H₂Sは一定の供給量に達する まではほぼ触媒に吸着されるため、循環系で濃縮 しなかった、NH₃は水への溶解度が大きいこと、 電解質膜に蓄積することなどから濃縮しなかった. 現在のTSは不純物が最大で500倍まで濃縮すると 仮定して作成されており,今回得られた個々の不 純物の濃縮挙動を, ISOの規格化に向けた議論 (不純物の許容濃度) に反映していく必要がある.

Table 4 Summary of accumulation of impurities

Impurities	Impact on cell voltage	Accumulation	Adsorption on catalyst / in membrane	Reactivity	Permeability	Solubility
CH_4	No	Yes	No	No	-	low
N ₂	No	Yes	No	No	Yes (from cathode)	low
He	No	Yes	No	No	Yes (to cathode)	low
со	Yes	No	Yes	Yes (CO →CO ₂)	-	low
H_2S	Yes	No	Yes	-	-	slightly
NH_3	Yes	No	Yes	-	Yes (to cathode)	high

本研究は,(独)新エネルギー・産業技術総合開発 機構(NEDO)の委託により実施している「水素社 会構築共通基盤整備事業」の成果の一部である.

参考文献

- 1) D.Imamura et al. : 2007 JSAE/SAE International Fuels and Lubricants Meeting, First Issue, p.100-104 (2007)
- 2) 辰巳雅仁ほか:水素エネルギーシステム, Vol.30, No.1, p.49-52 (2005)
- 3) ISO/TS14687-2 (2008)
- 松田佳之ほか:燃料電池の水素循環系における不純物の濃縮調査-CH4, COの濃縮挙動について-,自動車研究, Vol.29, No.6, p.259-262 (2007)
- Y.Hashimasa et al. : J. Power Sources, Vol.155, No.2, p.182-189 (2006)
- 6) F.A.Uribe et al. : J. Electrochem. Soc., Vol.49, No.3, A293 (2002)