
11. Introduction

Let (X, <) be a linearly ordered set.  We will consider two topologies on (X, <) at the same time.

One of them is a linearly ordered (topological) space (LOTS) and the other one is a Sorgenfrey

space.  Such a Sorgenfrey space is called the associated Sorgenfrey space in the connection with a

given LOTS.  A linearly ordered space (X, <, I ) has the order topology I defined by <, that is, a

basic open neighborhood of z in the LOTS is of the form ]x, y[＝{u∈X : x < u < y}, where x < z < y

are points of X.  The order topology is often called the interval topology.  That is the reason the

letter I is used.  A basic open neighborhood of x in a Sorgenfrey space (X, <, S ) is of the form

[x, y[＝{z∈ X : x ≤ z < y}, where x < y.  We usually abbreviate (X, <, I ) as (X, I ), and (X, <, S) as

(X, S).  We also write (X, < ) as X.

22. Linearly ordered spaces and Sorgenfrey spaces

H. R. Bennett, D. J. Lutzer and S. D. Purisch [BLP] defined the following properties to study

dense subspaces of generalized ordered spaces.  (See also [H2]).  They are interesting and

important because we have a fact : The density of X is equal to the cellularity of X.  
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In this paper, we give an answer to the following question that was posed by the

author in [H3]: Let (X, I ) be a linearly ordered space with a dense metrizable subspace.

Then, does the associated Sorgenfrey space (X, S) have a dense metrizable subspace?

Furthermore, we show some related consequences concerning σ -closed discrete dense

subsets, and Property III that was defined in [BL].
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A GO-space is defined as a subspace of a linearly ordered topological space that is abbreviated

by LOTS. (See Section 1).

Definition 1.  A (topological) space X is said to have Property I if and only if there exists a σ -

closed discrete dense subset D of X, that is, D＝∪{D(n) : n∈N} is a dense subset of X such that

D(n) is a closed discrete subset of X for every n∈N.  N denotes the set of natural numbers.

Definition 2.  A space X is said to have Property II if and only if there is a dense metrizable

subspace of X.

Definition 3.  A space X is said to have Property III if and only if, for each n∈N, there are an

open subset U(n) of X and a relatively closed discrete subset D(n) of U(n) such that, for a point p

and an open subset G of X that contains p,  there exists an n∈N such that p∈U(n) and G∩D(n)

≠Ø. (See [BL], [H1]).

It is interesting to consider the relationships between (X, I ) and (X, S ), where X is a linearly

ordered set. In this paper, we show that if (X, I ) has Property II, then so does (X, S ). (See Section

4).  This answers the question that was asked by the author in [H3].  Furthermore, we investigate

the cases of Properties I and III.  (See Sections 3 and 5).

33. Conditions that assure Property I on the associated Sorgenfrey spaces

We showed in [H2] that a LOTS (X, I ) with Property I does not necessarily imply that the

associated Sorgenfrey space (X, S ) has the property.  For example, the double line R×{0, 1} with

the usual lexicographic order-topology has Property I since the space is separable.  However, the

associated Sorgenfrey space does not have the property.  The double line does not have a Gδ -

diagonal.  If it had, the space must be metrizable [L].  It is well known that (R×{0, 1}, I ) is not

metrizable.  Hence one of the reasons that (X, S ) fails to have Property I is that the ordered space

(X, I ) does not have a Gδ -diagonal.  In the following theorem, metrizability that implies Property I

is assumed.

Theorem 1. If a LOTS (X, I ) is metrizable, the associated Sorgenfrey space (X, S ) has Property I.

Proof.  There exists a σ -discrete base B＝∪{B(n):n∈N} for (X, I ) since X is a metrizable

LOTS.  If B∈B(n) does not have its maximum, then we choose a point u(B)∈B.  If B∈B(n) has

its maximum, then let u(B) be the point.  Note that u(B)∈B.  Let D(n)＝{u(B) : B∈B(n)} and

D＝∪{D(n):n∈N}.  It is obvious that D(n) is a closed discrete in (X, S ).  We first show that D is

dense in (X, S ).  Let [x, y[ be a non-empty open subset of (X, S ).  Case (i): If ]x, y[ ≠ Ø, then there

exist a point z∈]x, y[ and B∈B(n) such that z∈B⊂]x, y[.  Hence u(B)∈]x, y[⊂[x, y[.  Case (ii):

Suppose that ]x, y[＝Ø.  If x has its predecessor, then {x} is open in (X, I ).  Hence there exists B∈

B such that x∈B⊂{x}.  Hence  B＝{x}.  Therefore, u(B)＝x and [x, y[∩D≠Ø.  If x does not have

its predecessor, then ]←, x] is open in (X, I ).  Hence there exists B∈B such that x∈B⊂]←, x].

Hence B has its maximum point.  Hence u(B)＝x.  Hence [x, y[∩D≠Ø.  This completes the proof.
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Corollary 1.  Let (X, I ) be a LOTS having Property I. If it has a Gδ -diagonal, then (X, S ) has

Property I.

Proof.  This follows from Theorem 1 and a fact that a LOTS with a Gδ --diagonal is metrizable

[L].

The following theorem states another condition for (X, I ) with Property I to assure the same

property on (X, S ).

Definition 4.  Let X be a linearly ordered set and {x, y} a two-point subset of X, where x < y.  If

]x, y[＝Ø, then {x, y} is said to be a jump.

Theorem 2.  Suppose that (X, I ) is a LOTS with countably many jumps. If (X, I ) has Property

I, then so does (X, S ).

Proof.  We first prove that (X, I ) has a Gδ -diagonal.  Note that a space on which we need to

assume is a GO-space and not a LOTS.  So we use X instead of (X, I ).  Let D＝∪{D(n): n∈N} be

a dense subset of X, where D(n) is closed discrete in X for every n∈ N.  We may assume that D(n)

⊂D(n+1).  Let {{xn , yn}: n∈N} be countable jumps in X, that means xn < yn and ]xn , yn[＝Ø.  Let

D´(n)＝D(n)∪{xn , yn}.  Then D´(n) is closed discrete in X.  Hence we may assume that all jumps

are contained in D.  Since X－D(n) is open in X, it is expressed as a disjoint union of open convex

subsets, that is, 

X－D(n)＝∪{U(α) : α∈A(n)}.

Since D(n) is closed discrete and that a GO-space is collectionwise normal, we can find an open set

V(n ; d) for each d∈D such that V(n ; d)∩V(n; d´)＝Ø for d≠d´∈D(n).  Since X is first-

countable, we can find open sets V(n, m ; d)(m∈N) that are contained in V(n ; d) for d∈D(n)

such that {V(n, m ; d): m∈N} is a local base at d∈D(n).  Set

G (n, m)＝{U(α): α∈A(n)}∪{V(n, m ; d): d∈D(n)}, 

where for d≠d´ in D(n), V(n, m ; d)∩V(n, m ; d´)＝Ø and V(n, m+1; d)⊂V(n, m ; d), V(n+1, m ; d)

⊂V(n, m ; d) and that {V(n, m ; d) : m∈N} is a countable base at d∈D(n). We show that {G (n, m)

: n∈N, m∈N} is a Gδ -diagonal.  To show this, x and y are distinct points of X.  Case (i): x and y are

points of D. There exists n∈N such that x, y∈D(n). There exists m∈N such that V(n, m ; x) does

not contain y.  Hence St(x, G (n, m))＝V(n, m) does not contain y.  Case (ii): Let x∈D and y∈X－

D.  There exists n∈N such that x∈ D(n).  Suppose that {x, y} is a jump, where x < y and ]x, y[＝Ø.

Hence x, y∈D.  This is a contradiction.  Case (iii): Let x∈ X－D and y∈D.  There exists n∈ N

such that y∈D(n).  Furthermore, there exists α∈A(n) such that x∈U(α)⊂X－D(n).  It is easy

to see that U(α) does not contain y.  If there exists z∈D(n) such that x∈V(n ; z), then there exists

m∈N such that V(n, m ; z) does not contain y.  Hence St(x, G(n, m)) does not contain y.  Case (iv):
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Let x, y∈X－D.  If ]x, y[∩D≠Ø, then we can use the argument in Case (iii).  Suppose that

]x, y[∩D＝Ø.  If {x, y} is a jump, then x, y∈D.  This is also a contradiction.  This completes the

proof that {G (n, m): n∈N, m∈N} is a Gδ -diagonal.  Now let us return to the proof of the theorem.

Since (X, I ) is a LOTS, it is metrizable by [L].  We then invoke Theorem 1 to get the result.  This

completes the proof.

The following is worth to note here to give the converse situation to Theorem 2, although it

was essentially proved in [BLP].

Proposition 1. Let X be a GO-space with a Gδ -diagonal.  If X has no isolated points, then X has

Property I.

Proof.  Let {G (n) : n∈N} be a Gδ -diagonal for X.  We assume that each member of G (n) is an

open convex subset of X and that G (n+1) is a refinement of G (n).  Since X is paracompact by [L,

(4.5)], for each n∈N, there exists a σ -discrete collection {F (n, m): m ∈N} in X, where each

member of F (n, m) is a closed subset of X and∪{F (n, m): m∈N} is a cover of X for every n∈N,

and F (n, m) is a refinement of G (n).  For each F∈F (n, m), choose a point p(F)∈F.  Set

D(n, m)＝{p(F): F∈F (n, m)}, then D(n, m) is a closed discrete subset of X.  Let D＝∪{D(n, m):

n∈N, m∈N}.  Then D is a dense subset of X.  To show this, let G be an open set of X and q a

point of G.  We may assume that G is convex.  Since X has no isolated points, there exist at least

three points u < v < w in G.  There exists n∈N such that St(v, G (n))⊂]u, w[.  Since ∪{F (n, m):

m∈N} is a cover of X, there exist m∈N and F∈F (n, m) such that v∈ F.  Since there exists B∈

G (n) such that F⊂B, v is a point of B.  Hence F⊂B⊂]u, w[⊂G.  Hence p(F)∈G∩D.

Therefore, D is a dense subset of X.  Hence X has Property I.

44.  Dense metrizable subspaces

The following theorem gives an affirmative answer to the question that was posed in [H3].

Theorem 3. If a LOTS (X, I  ) has Property II, so does (X, S ).

Proof.  Let D be a dense metrizable subspace of (X, I ).  Then D has a Gδ -diagonal {G (n): n∈

N}, where every G (n) is an open cover of D and any two points x and y in D, x≠y, there exists an n

∈N such that St(x, G (n)) does not contain y.  Furthermore, we assume that every G∈G (n) is

convex in D.  Let I＝{x : {x} is open in (X, S ) and is not open in (X, I )}.  Let 

D´＝D∩(X－Cl(I, (X, I ))), 

where Cl(A, X) denotes the closure of A in a space X.  Let E＝D´∪I.  Then E is a dense subset of

(X, S ).  To show this, let x∈X－E and [x, y[ be a neighborhood of x in (X, S ).  We first show that

]x, y[≠Ø.  Suppose that ]x, y[＝Ø.  If x has its predecessor, then x∈D and x does not belong to
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Cl(I, (X, I ))).  Hence x∈D .́  This is a contradiction.  If x does not have its predecessor, then x∈I.

This is a contradiction.  Hence ]x, y[≠Ø.  Since ]x, y[ is a non-empty open set of (X, I ), ]x, y[∩

D≠Ø.  Let d∈]x, y[∩D.  If ]x, y[∩I≠Ø, then [x, y[∩E≠Ø.  Suppose that ]x, y[∩I＝Ø.  Then d

does not belong to Cl(I, (X, I )).  Hence d∈D´.  This is a contradiction.  This shows that E is a

dense subset of (X, S ).  Since X－Cl (I, (X, I )) is an open subset of (X, I ), it is expressed as a

union of open convex subsets of (X, I ), say, X－Cl (I, (X, I ))＝∪{Uα : α∈A}, where Uα is a

convex component in (X, I ).  Let n∈N, and set

H (n)＝{G∩Uα : G∈G (n) and α∈A}∪{{x}: x∈I }.

We show that H (n) is an open cover of (E, S|E).  It is easy to see that G∩Uα ⊂E.  To show that

each member of H (n) is open in (E, S|E), we take G∩Uα ∈ H (n), where G∈G (n) and α∈A.

Then G＝V∩D, where V is open in (X, I ).  Since G∩Uα ⊂D∩(X－Cl(I, (X, I )))＝D´⊂E, we

have G∩Uα ＝(V∩Uα )∩D＝(V∩Uα )∩D´＝(V∩Uα )∩E, because (V∩Uα )∩I＝Ø.  Hence

G∩Uα is open in (E, I |E).  Therefore, G∩Uα is open in (E, S|E).  It is obvious that {x}(x∈I ) is

open in (E, S|E).  To show that H (n) is a cover of E, let d∈ D´.  Then d∈D∩(X－Cl (I, (X, I ))).

Hence there exist G∈G (n) and α∈A such that d∈G and d∈Uα .  Hence d∈ G∩Uα .  Let d∈I.

Then d∈{d}∈H (n).  Finally, we show that {H (n): n∈N} is a Gδ -diagonal for E.  To show that,

let x and y are distinct points of E.  Let x∈ I.  Since there are no elements G∩Uα of H (n) that

contain x, it is  easy to prove that, for n∈N, St(x, H (n))＝{x} does not contain y.  Let x∈D´ and

y∈ I.  Then there exist G∈G (n) for (any) n∈N and Uα for some α∈A such that G∩Uα

contains x.  Since G∩Uα has no elements of I, it does not contain y.  Note that St(x, H (n))＝

St(x, G (n))∩Uα .  Let x and y be points of D´.  Since x and y∈D, there exists n∈N such that

St (x, G (n)) does not contain y.  Since each element of H (n) is contained in an element of G (n),

St(x, H (n)) does not contain y.  This shows that {H (n): n∈N} is a Gδ -diagonal for (E, S|E).  By

[BLP, Proposition (3.4)], (X, S) has a dense metrizable subspace.  This completes the proof.

55.  Property III

We would like to pose the following question that seems to be difficult to answer [H3].

Question. Let (X, I ) be a LOTS having Property III.  Does (X, S ) have Property III?

If the assumption on (X, I ) is strengthened to Property I, we obtain a result.

Theorem 4. Suppose that (X, I ) has Property I.  Then (X, S ) has Property III.

Proof.  Let D＝∪{D(n) : n∈N} be a dense subset of (X, I )  such that D(n) is a closed discrete

subset of (X, I )  for every n∈N.  Let U(0)＝D(0) be the set of isolated points of (X, S ).  For

every n > 0, set U(n)＝X.  It is clear that, for every n ≥ 0, U(n) is open in (X, S) and D(n) is

relatively closed discrete in U(n)⊂(X, S ).  Then the collection {U(n), D(n) : n ≥ 0} builds what is
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necessary to assure Property III.  To see this, let p be a point of X and G an open subset of (X, S )

containing p.  First let p be an isolated point of (X, S ).  Then p∈U(0) and G∩D(0)≠Ø. Suppose

that p is not an isolated point of (X, S).  Then we may assume that G＝[p, q[ and ]p, q[≠Ø, where

p < q.  Since ]p, q[ is open, and D is dense, in (X, I ), it follows that ]p, q[∩D≠Ø.  Hence there

exists an n ≥ 1 such that ]p, q[∩D(n)≠Ø and p∈U(n)＝X.  Hence G∩D(n)≠Ø.  This

completes the proof of Theorem 4.
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