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An affirmative answer to a question concerning dense
metrizable subspaces of generalized ordered spaces

Masami HOSOBUCHI

Abstract

In this paper, we give an answer to the following question that was posed by the
author in [H3]: Let (X, ) be a linearly ordered space with a dense metrizable subspace.
Then, does the associated Sorgenfrey space (X, 5) have a dense metrizable subspace?
Furthermore, we show some related consequences concerning o -closed discrete dense
subsets, and Property III that was defined in [BL].
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1. Introduction

Let (X, <) be a linearly ordered set. We will consider two topologies on (X, <) at the same time.
One of them is a linearly ordered (topological) space (LOTS) and the other one is a Sorgenfrey
space. Such a Sorgenfrey space is called the associated Sorgenfrey space in the connection with a
given LOTS. A linearly ordered space (X, <, ¢) has the order topology ¢ defined by <, that is, a
basic open neighborhood of z in the LOTS is of the form ]x, y[0 {#0 X :x <u <y}, wherex <z<y
are points of X. The order topology is often called the interval topology. That is the reason the
letter 7 is used. A basic open neighborhood of x in a Sorgenfrey space (X, <, ) is of the form
[x, y[O {z0 X:x <z<y}, where x <y. We usually abbreviate (X, <, 7) as (X, ), and (X, <, 5) as
X, S). We also write (X, <) as X.

2. Linearly ordered spaces and Sorgenfrey spaces

H. R. Bennett, D. J. Lutzer and S. D. Purisch [BLP] defined the following properties to study
dense subspaces of generalized ordered spaces. (See also [H2]). They are interesting and

important because we have a fact : The density of X is equal to the cellularity of X.
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A GO-space is defined as a subspace of a linearly ordered topological space that is abbreviated
by LOTS. (See Section 1).

Definition 1. A (topological) space X is said to have Property I if and only if there exists a o-
closed discrete dense subset D of X, that is, DO O {D(») : O N} is a dense subset of X such that
D(n) is a closed discrete subset of X for every 0 N. N denotes the set of natural numbers.

Definition 2. A space X is said to have Property Il if and only if there is a dense metrizable
subspace of X.

Definition 3. A space X is said to have Property IIl if and only if, for each n0 N, there are an
open subset U(n) of X and a relatively closed discrete subset D(#) of U(n) such that, for a point p
and an open subset G of X that contains p, there exists an # N such that p0 U(») and Gn D(n)
# O. (See [BL], [H1]).

It is interesting to consider the relationships between (X, ¢) and (X, ), where X is a linearly
ordered set. In this paper, we show that if (X, ¢) has Property II, then so does (X, 5). (See Section
4). This answers the question that was asked by the author in [H3]. Furthermore, we investigate
the cases of Properties I and III. (See Sections 3 and 5).

3. Conditions that assure Property I on the associated Sorgenfrey spaces

We showed in [H2] that a LOTS (X, 7) with Property I does not necessarily imply that the
associated Sorgenfrey space (X, S ) has the property. For example, the double line Rx {0, 1} with
the usual lexicographic order-topology has Property I since the space is separable. However, the
associated Sorgenfrey space does not have the property. The double line does not have a Gs-
diagonal. If it had, the space must be metrizable [L]. It is well known that (Rx {0, 1}, 7) is not
metrizable. Hence one of the reasons that (X, ) fails to have Property I is that the ordered space
(X, 9) does not have a Gs-diagonal. In the following theorem, metrizability that implies Property I

is assumed.
Theorem 1. Ifa LOTS (X, ) is metrizable, the associated Sorgenfrey space (X, 5) has Property L.

Proof. There exists a o-discrete base 70 O {7 (n):»0 N} for (X, 7) since X is a metrizable
LOTS. If BO % (n) does not have its maximum, then we choose a point #(B)O B. If BO % (n) has
its maximum, then let #(B) be the point. Note that #(B)O B. Let D(»)0 {#(B) : BO B (n)} and
DO O {Dm):»x0 N}. Itis obvious that D(n) is a closed discrete in (X, ). We first show that D is
dense in (X, S). Let [x, y[ be a non-empty open subset of (X, ). Case (i): If 1x, y[ # 9, then there
exist a point zO ], y[ and B O 7B (#) such that z00 BO ]x, y[. Hence #(B)O Jx, y[O [x, y[. Case (ii):
Suppose that Jx, y[O0 @. If x has its predecessor, then {x} is open in (X, 7). Hence there exists B[l
7 such that xO BO {x}. Hence BO {x}. Therefore, #(B)0 x and [x, y[n D# @. If x does not have
its predecessor, then | —, x] is open in (X, 7). Hence there exists B0 7 such thatx0 BO | —, x].
Hence B has its maximum point. Hence #(B)0 x. Hence [x, y[n D# @. This completes the proof.
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Corollary 1. Let (X, 7) be a LOTS having Property 1. If it has a Gs-diagonal, then (X, §) has
Property L

Proof. This follows from Theorem 1 and a fact that a LOTS with a Gs-diagonal is metrizable
[L].

The following theorem states another condition for (X, ) with Property I to assure the same
property on (X, §).

Definition 4. Let X be a linearly ordered set and {x, y} a two-point subset of X, where x <y. If
lx, y[O @, then {x, y} is said to be a jump.

Theorem 2. Suppose that (X, 7) is a LOTS with countably many jumps. If (X, &) has Property
1, then so does (X, 5).

Proof. We first prove that (X, 7) has a Gs-diagonal. Note that a space on which we need to
assume is a GO-space and not a LOTS. So we use X instead of (X, 7). Let DO O {D(n): nJ N} be
a dense subset of X, where D (#) is closed discrete in X for every n0 N. We may assume that D (n)
O D(n+1). Let {{xn, y»}: #0 N} be countable jumps in X, that means x, <y, and lx,, y,[0 @. Let
D' ()0 D)0 {%x, yu}. Then D’ (n) is closed discrete in X. Hence we may assume that all jumps
are contained in D. Since X0 D(n) is open in X, it is expressed as a disjoint union of open convex
subsets, that is,

XO0DmOO{U(w : a0 A(m)}.

Since D(n) is closed discrete and that a GO-space is collectionwise normal, we can find an open set
V(n ; d) for each d0O D such that V(n ; d)n V(n; d)O @ for d# d'0 D(n). Since X is first-
countable, we can find open sets V(n, m ; d)(m O N) that are contained in V(n ; d) for d0 D(n)
such that {V(n, m ; d): mO N} is alocal base at d0 D(n). Set

Sm,mO{U(x): a0 A)}O {Vn, m ; d): d0 D)},

where ford# d in D), Vin, m ;d)n Vin, m;d)0 @ and Vi, m+1; )0 Vin, m ; d), V(n+l, m ; d)
O V(n, m ; d) and that {V(n, m ; d) : mO N} is a countable base at d00 D(n). We show that {& (, m)
:n N, m0O N} is a Gs-diagonal. To show this, ¥ and y are distinct points of X. Case (i): x and y are
points of D. There exists »[ N such that x, yO D(x). There exists w0 N such that V(x, m ; x) does
not contain y. Hence St(x, & (n, m))0 V(n, m) does not contain y. Case (ii): Let x0 D and yO X0

D. There exists 0 N such thatxJ D(n). Suppose that {x, y} is a jump, where x < y and ]x, y[O O.
Hence x, yO D. This is a contradiction. Case (iii): Let x0 X0 D and yO D. There exists n0 N
such that yOO D(n). Furthermore, there exists a0 A(#n) such that xO U(e)0 XO D(n). It is easy
to see that U(e) does not contain y. If there exists z0 D(xn) such thatxO V(n ; 2), then there exists
m O N such that V(n, m ; z2) does not contain y. Hence St(x, & (%, m)) does not contain y. Case (iv):
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Letx, yO XO D. If ]x, y[n D# O, then we can use the argument in Case (iii). Suppose that
lx, yIn DO @. If {x, y} is a jump, then x, yO D. This is also a contradiction. This completes the
proof that {< (n, m): nO0 N, mO N} is a Gs-diagonal. Now let us return to the proof of the theorem.
Since (X, 7) is a LOTS, it is metrizable by [L]. We then invoke Theorem 1 to get the result. This
completes the proof.

The following is worth to note here to give the converse situation to Theorem 2, although it
was essentially proved in [BLP].

Proposition 1. Let X be a GO-space with a Gs-diagonal. If X has no isolated points, then X has
Property I.

Proof. Let {< (n) : nO N} be a Gs-diagonal for X. We assume that each member of & () is an
open convex subset of X and that & (#+1) is a refinement of & (n). Since X is paracompact by [L,
(4.5)], for each n0 N, there exists a ¢ -discrete collection {F (n, m): m O N} in X, where each
member of 7 (n, m) is a closed subset of X and 0 {F (n, m): m [ N} is a cover of X for every n O N,
and F (n, m) is a refinement of & (n). For each FO F(n, m), choose a point p(F)O F. Set
D, m)O {p(F): FO F (n, m)}, then D(n, m) is a closed discrete subset of X. Let DO O {D(n, m):
n0 N, mO N}. Then D is a dense subset of X. To show this, let G be an open set of X and ¢ a
point of G. We may assume that G is convex. Since X has no isolated points, there exist at least
three points # < v < w in G. There exists #0 N such that St(v, & ())O Ju, wl. Since O {F (n, m):
m N} is a cover of X, there exist m O N and FO F (», m) such that v0 F. Since there exists BO
S (n) such that FO B, v is a point of B. Hence FO BO lu, w[O G. Hence p(F)OJ Gn D.
Therefore, D is a dense subset of X. Hence X has Property 1.

4. Dense metrizable subspaces

The following theorem gives an affirmative answer to the question that was posed in [H3].
Theorem 3. Ifa LOTS (X, &) has Property II, so does (X, <5).

Proof. Let D be a dense metrizable subspace of (X, ¢). Then D has a Gs-diagonal {< (#): n
N}, where every & (n) is an open cover of D and any two points ¥ and y in D, x# y, there exists an »
O N such that St(x, & (#)) does not contain y. Furthermore, we assume that every GO < (») is
convex in D. Let I {x: {x} is open in (X, ) and is not open in (X, 9)}. Let

D'0Dn (XO CI(Q, X, 9))),

where Cl(4, X) denotes the closure of A in a space X. Let EQ D'T I. Then E is a dense subset of
X, S). To show this, letx X0 E and [x, y[ be a neighborhood of x in (X, ). We first show that
lx, y[# @. Suppose that ]x, y[O @. If x has its predecessor, then x00 D and x does not belong to
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ClU, (X, 7))). Hence x0 D’ This is a contradiction. If x does not have its predecessor, then x0 .
This is a contradiction. Hence ]x, y[# @. Since lx, y[ is a non-empty open set of (X, 7), Ix, y[n

Dz @. LetdUO lx,y[n D. If Jx,y[n I# O, then [x, y[n E# O. Suppose that ]x, y[n I0 @. Then d
does not belong to C1(Z, (X, 7)). Hence d0 D’. This is a contradiction. This shows that E is a
dense subset of (X, S). Since XU Cl (I, (X, 9)) is an open subset of (X, 7), it is expressed as a
union of open convex subsets of (X, 7), say, X0 Cl (I, (X, 7))d 0 {Uy: ad A}, where Uy is a
convex component in (X, 7). Let 0 N, and set

FHmUO{Gn Uy: GO G () and o0 A}O {{x}:x0 1},

We show that 7 (n) is an open cover of (E, S|g). Itis easy to see that Gn U, O E. To show that
each member of 7 () is open in (E, S|g), we take Gn Uy 0 # (n), where GO & () and o0 A.
Then GO Vn D, where Vis open in (X, 7). Since Gn U,0 Dn (XO Cl{, X, 7)))0 D'0 E, we
have Gn U, 0 (Vn Uy)n DO (Va Ug)n D'0 (Vn Ux)n E, because (Vn Uyx)n I0 @. Hence
Gn Uy isopenin (E, 7|g). Therefore, Gn Uy is open in (E, S|g). It is obvious that {x} (x0 I) is
open in (E, S|g). To show that 7# () is a cover of E, let dJ D’. ThendO Dn (XO Cl U, (X, 9))).
Hence there exist GO < (#) and o0 A such that d0 G and d0 U,. HencedO Gn Uy. LetdO I
Then dO {d}O # (»). Finally, we show that {# (»): O N} is a Gs-diagonal for E. To show that,
let x and y are distinct points of E. Let x I. Since there are no elements Gn U, of 7 (n) that
contain x, it is easy to prove that, for 0 N, St(x, 7 (n))O {x} does not contain y. Letx 0 D" and
yO I. Then there exist GO < (#) for (any) 0 N and U, for some o0 A such that Gn Uy
contains x. Since Gn U, has no elements of /, it does not contain y. Note that St(x, # (n))0

St(x, & m))n Us. Letx and y be points of D". Since x and yO D, there exists #0 N such that
St (x, & (n)) does not contain y. Since each element of 7 (#) is contained in an element of < (),
St(x, 7 (n)) does not contain y. This shows that {# (#): #O N} is a Gs-diagonal for (E, S|g). By
[BLP, Proposition (3.4)], (X, ) has a dense metrizable subspace. This completes the proof.

5. Property II1
We would like to pose the following question that seems to be difficult to answer [H3].
Question. Let (X, ) be a LOTS having Property III. Does (X, 5) have Property III?
If the assumption on (X, 7) is strengthened to Property I, we obtain a result.
Theorem 4. Suppose that (X, ) has Property I. Then (X, <5) has Property III.
Proof. Let DO O {D(») : 0 N} be a dense subset of (X, ) such that D(#) is a closed discrete
subset of (X, 7) for every n0 N. Let U(0)O D(0) be the set of isolated points of (X, S ). For

every n > 0, set Un)d X. It is clear that, for every n > 0, U(n) is open in (X, S) and D(n) is
relatively closed discrete in U(z)0 (X, S ). Then the collection {U(%), D(n) : n > 0} builds what is
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necessary to assure Property III. To see this, let p be a point of X and G an open subset of (X, )
containing p. First let p be an isolated point of (X, S). Then p00 U(0) and Gn D(0)# @. Suppose
that p is not an isolated point of (X, ). Then we may assume that GO [p, ¢q[ and |p, q[# O, where
p < q. Since ]p, q[ is open, and D is dense, in (X, 7), it follows that |p, g[n D# @. Hence there
exists an # > 1 such that ]p, q[n D)% @ and p0 U(n)0O X. Hence Gn D(n)#z @. This
completes the proof of Theorem 4.
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