大規模固有値問題のための Jacobi-Davidson 法とその特性について

西田 晃 小柳義夫

近年 Sleijpen ら (1996) によって提案された Jacobi-Davidson 法は,大規模疎行列の固有値解法としていくつかの新しい性質を持ち,注目を集めている.実際,従来の Lanczos/Arnoldi 系の解法が外部固有値の計算に適しているのに対し,Jacobi-Davidson 法にはそのような制約がない.本論文では,この手法について紹介するとともに,その特性を他の大規模固有値解法と比較する.

A Survey on the Jacobi-Davidson Method and its Characteristics for Large-scale Eigenvalue Problems

AKIRA NISHIDA† and YOSHIO OYANAGI†

The Jacobi-Davidson method, which was recently proposed by Sleijpen, et al. (1996) is a promising alternative to the Lanczos/Arnoldi approach. In fact, the Lanczos/Arnoldi approach is suitable for computing extreme eigenvalues of general sparse matrices, whereas the Jacobi-Davidson method does not have such ristrictions. In this paper, the details and the characteristics of the Jacobi-Davidson method are surveyed and compared with other approaches.

1. はじめに

大規模疎行列の固有値計算アルゴリズムとしては,従来 Lanczos/Arnoldi 系の解法 $^{5),8)\sim 10)$ を用いるのが一般的であった.比較的小規模な行列においては,全固有値を求める QR 法を用いることができるが,問題の大きさn に対して $\mathcal{O}(n^3)$ の計算量を要するため,この方法では規模の大きな問題を扱うことができない.このため,リスタートを用いた反復 Lanczos/Arnoldi 法は,特に疎行列を扱う場合に最も実際的な解法であるといえるが,固有値が近接している場合,正確な計算が難しいことが知られている.

Jacobi-Davidson 法 $^{12),13),15),16)$ は,このように比較的条件の悪い場合にも正確に固有値を計算できる $^{6)}$ ことから,Lanczos/Arnoldi 法に代わる有力なアルゴリズムとして注目されている.本論文ではこの手法の概要を紹介するとともに,他の固有値解法との関係について述べる.

2. Jacobi-Davidson 法

Jacobi-Davidson 法は,従来 Davidson 法4)として

提案された手法に, Jacobi 法⁷⁾の考え方を用いて改良を加えたものである.本章では, Davidson 法をもとに, Jacobi-Davidson 法の導出を行う.

2.1 Davidson 法

Davidson 法では,以下のような手続きで絶対値最大の固有値を求める.

次元 k の部分空間 $\mathcal{K}=\mathrm{span}\{v_1,...,v_k\}$ 上で,行列 A の近似固有対,すなわち Ritz 値 θ_k および Ritz ベクトル u_k を考える.ここで $v_1,...,v_k$ は正規直交基底 とする. u_k を更新するためには \mathcal{K} の次元を拡張する 必要があるが,Davidson 法では残差 $r=Au_k-\theta_ku_k$ について修正方程式と呼ばれる以下のような方程式を解く.

$$M_kt=r, \quad M_k=D_A-\theta_kI$$
 (1) D_A は A の対角成分である.さらに t を $\mathcal K$ と直交化して v_{k+1} を得る. $V_{k+1}=[v_1,...,v_{k+1}]$ と置けば,新しい Ritz 対 (θ_{k+1},u_{k+1}) は行列

$$H_{k+1} = V_{k+1}^* A V_{k+1}$$
 (2) の固有対として計算されることになるが,このことから, $M_k = I$ の場合に,Davidson 法は Lanczos/Arnoldi 法と同一となることが分かる .

Davidson 法は一種の加速付 Lanczos/Arnoldi 法と考えることができる.

Division of Information Science, School of Science, The University of Tokyo

以下単に最大固有値と書く.

[†] 東京大学大学院理学系研究科情報科学専攻

ところが,ここで

$$M_k^{-1} \approx (A - \theta_k I)^{-1} \tag{3}$$

を残差ベクトル r に対する前処理行列と考えれば分かるように,この方法では θ_k に対応する近似固有ベクトル u_k の方向の成分を増幅させる結果となり,特に A が対角行列である場合には,新しい固有ベクトル成分を得ることができない.

2.2 Jacobi-Davidson 法

したがって , ここでは u_k の直交補空間から更新の ための成分を取り出すことを考える . 以下では u_k は 正規化されているものと仮定する .

固有値問題 $Ax=\lambda x$ を , 以下のように u_k の直交補空間 u_k^\perp 上に射影する . 行列 A の u_k^\perp への直交射影は

$$\tilde{A} = (I - u_k u_k^*) A (I - u_k u_k^*) \tag{4}$$

で表されるが、これは

$$A = \tilde{A} + u_k u_k^* A + A u_k u_k^* - \theta_k u_k u_k^* \tag{5}$$

と書き直すことができる.修正ベクトルzは

$$A(z + u_k) = \lambda(z + u_k), \quad z \perp u_k \tag{6}$$

を満たすので,ここに式(5)を代入すれば

$$(\tilde{A} - \lambda I)z = -r + (\lambda - \theta_k - u_k^* A z) u_k \tag{7}$$

となる. $ilde{A}z\perp u_k$, $z\perp u_k$, $r\perp u_k$ より u_k の係数は 0 でなければならないので,問題は

$$(\tilde{A} - \lambda I)z = -r \tag{8}$$

の計算に帰着されることが分かる.実際には λ の値を知ることはできないが,式(8) は厳密に解く必要がないため,ここでは代わりに θ_k を用いて

$$(I - u_k u_k^*)(A - \theta_k I)(I - u_k u_k^*)z = -r$$
 (9)

を解く、得られたベクトルを V_k に対して直交化し, v_{k+1} とする. $H_{k+1}=V_{k+1}^*AV_{k+1}$ の最大固有値が次 ステップの Ritz 値 θ_{k+1} となる.具体的なアルゴリズムを図 1 に示す.

2.3 前 処 理

Jacobi-Davidson 法においては, 反復法による式(9) の計算を効率的に行う必要がある. そこで以下では Jacobi-Davidson 法の前処理について考える¹⁴⁾.

式
$$(9)$$
 の近似解を $ilde{z}$ とする . このとき , $ilde{z} \perp u_k$ より ,

$$(A - \theta_k I)\tilde{z} - \alpha u_k = -r \tag{10}$$

が成り立つので, $A- heta_k I$ を M_k で近似すれば,

$$\tilde{z} = -M_k^{-1}r + \alpha M_k^{-1} u_k \tag{11}$$

と表すことができる.この場合にも近似解は u_k と直 交する空間に限定されるので,実際には近似演算子と して

```
input a starting vector v and a tolerance \epsilon;
compute u_1 = v_1 = v / \parallel v \parallel_2;
w_1 = Av_1, \ \theta = h_{1,1} = w_1^*v_1, \ r = w_1 - \theta v_1;
for k=2,...
     solve approximately a z \perp u from
        (I - uu^*)(A - \theta I)(I - uu^*)z = -r;
     for j = 1, ..., k - 1
        z = z - (z^*v_i)v_i;
     v_k = z / ||z||_2, \ w_k = Av_k;
     for j = 1, ..., k
        h_{j,k} = w_k^* v_j;
     compute the largest eigenpair (\theta, y)
     of the matrix H_k with ||y|| = 1;
     compute the Ritz vector u = Vy
     and \tilde{u} = Au = Wy;
     r = \tilde{u} - \theta u;
     stop if ||r||_2 \le \epsilon;
```

図1 JD 法による最大固有値の計算

Fig. 1 Computation of the largest eigenpair by JD.

solve
$$\bar{u}$$
 from $M_k\bar{u}=u;$
compute $\tilde{r}\equiv \tilde{M}_k^{-1}r$ as:
solve x from $M_kx=r;$
 $\tilde{r}=x-\frac{u^*x}{u^*\bar{u}}\bar{u};$
solve approximately $\tilde{M}_k^{-1}\tilde{A}z=-\tilde{r}$
with $z_0=0;$

図 2 左前処理を用いた修正方程式の計算部分

Fig. 2 Computation of correction equation with left preconditioning.

$$ilde{M}_k = (I - u_k u_k^*) M_k (I - u_k u_k^*)$$
 (12) を用いる必要がある.左前処理では,演算子として $ilde{M}_k^{-1} ilde{A} (ilde{A} = (I - u_k u_k^*) (A - \theta_k I) (I - u_k u_k^*))$ を用いる.

この場合 , 反復ベクトル y に対して $\tilde{y}=(A-\theta_k I)y$ とおくと , $y\perp u_k$ より

$$\tilde{A}y = (I - u_k u_k^*)(A - \theta_k I)(I - u_k u_k^*)y$$
 (13)

$$= (I - u_k u_k^*)(A - \theta_k I)y \tag{14}$$

$$= (I - u_k u_k^*) \tilde{y} \tag{15}$$

となるので , $ilde{M}_k^{-1} ilde{A} y = \hat{y}$ は

$$\tilde{M}_k \hat{y} = (I - u_k u_k^*) \tilde{y} \tag{16}$$

を解くことによって求めることができる.実際には, \hat{y} と u_k との直交性から

$$M_k \hat{y} = \tilde{y} - \alpha u_k \tag{17}$$

と書けるので , $M_k ar{y} = ar{y}$, $M_k ar{u} = u_k$ とすれば

$$\hat{y} = \bar{y} - \alpha \bar{u} \tag{18}$$

より \hat{y} の直交条件を用いて

$$\alpha = \frac{u_k^* \bar{y}}{u_k^* \bar{u}} \tag{19}$$

を得る、以上をまとめたものを図2に示す、

この手法は Jacobi's orthogonal component correction (JOCC) と呼ばれ , Davidson 法もこれに含まれる $^{7),13)}$.

3. 複数固有値の計算

3.1 JDQR 法

次に , 減次を用いて複数の固有値を求めることを考える $^{6)}$. 行列 A の部分 Schur 形を

$$AQ_k=Q_kR_k,\quad k\ll n$$
 (20)
とする.ここで Q_k は $n\times k$ 正規直交行列, R_k は $k\times k$ 上三角行列である.このとき R_k の固有対を (x,λ) とすると, A の固有対は (Q_kx,λ) となる.部分 Schur 形は以下のように計算する.

- (1) 正規直交基底 $V_i=[v_1,...,v_i]$ に対して,射影行列 $M=V_i^*AV_i$ を求め,QR 法により Schur 形 M=US, $U^*U=I$ を計算する. τ に近い 固有値を求める場合, $|s_{i,i}-\tau|$ が昇順に並ぶよう S の列を交換すると, $s_1,s_2,...$ の順に,必要な固有値に近い近似固有ベクトルが並ぶ.この過程で,記憶容量に応じてリスタートを行うこともできる.
- (2) 次に部分空間の拡張を行う. すでに k 次の部分 Shur 形が得られているとすると,

$$A[Q_k,\ q] = \begin{bmatrix} Q_k,\ q \end{bmatrix} \left[\begin{array}{cc} R_k & s \\ & \lambda \end{array} \right],\ (21)$$

$$Q_k^* q = 0 (22)$$

となるベクトル q を定めればよいが , このとき

$$(I - A_k Q_k^*)(A - \lambda I)(I - Q_k Q_k^*) = 0$$
(23)

が成り立つ . q は

$$\tilde{A} = (I - A_k Q_k^*) A (I - Q_k Q_k^*) \tag{24}$$

の固有ベクトルであるので, $ilde{A}$ に対する Jacobi-Davidson 法により計算することができる.以上のアルゴリズムは JDQR 法と呼ばれている.

3.2 前 処 理

 $A-\theta I$ に対する前処理行列 M_k がすでに得られていると仮定する . \tilde{Q}_{k-1} を u により拡張したものを \tilde{Q} とおく . M_k は \tilde{Q} の次元に制限されるので , 実際には

$$\tilde{M}_k = (I - \tilde{Q}\tilde{Q}^*)P_k(I - \tilde{Q}\tilde{Q}^*) \tag{25}$$

を用いなければならない.この場合も,以下のように 簡単に前処理を行うことができる.

修正方程式の計算において,反復の初期ベクトルは \tilde{Q}_k の空間内にあるので,全反復ベクトルはこの中に 含まれる.したがって,v を反復法から得られるベクトルとすると,この部分空間内でベクトル $z=\tilde{M}_k^{-1}\tilde{A}_kv$ を計算する必要がある.

これは以下のように行う . $ilde{Q}^*v = 0$ より , y =

 $(A - \theta I)v$ とおけば

$$\tilde{A} = (I - \tilde{Q}\tilde{Q}^*)(A - \theta I)(I - \tilde{Q}\tilde{Q}^*)v \tag{26}$$

$$= (I - \tilde{Q}\tilde{Q}^*)y \tag{27}$$

と書ける. 左前処理の場合,

$$\tilde{M}_k u = (I - \tilde{Q}\tilde{Q}^*)y \tag{28}$$

を満たす $z\perp \tilde{Q}$ を計算する . $\tilde{Q}^*z=0$ より , z は $M_kz=y-\tilde{Q}\gamma$, すなわち $z=M_k^{-1}y-M_k^{-1}\tilde{Q}\gamma$ を満たす . γ については , $\tilde{Q}^*z=0$ より

$$\gamma = (\tilde{Q}^* M_k^{-1} \tilde{Q})^{-1} \tilde{Q}^* M_k^{-1} y \tag{29}$$

から計算できる.

4. 内部固有値の計算

実際には,上の方法では τ より大きな絶対値を持つ固有値(内部固有値)を安定に計算することができない.これは,Ritz 値が主にスペクトルの外部にある固有値に関する情報を含んでいるためであるが,Jacobi-Davidson 法では,以下に述べる調和 Ritz 値を用いることで,この問題に対処している.

対称行列 A に関する固有値問題において,Lanczos 過程では,Krylov 部分空間 $V_{i+1}=[v_1,...,v_{i+1}]$ を導く.Lanczos 過程から

$$AV_i = V_{i+1}T_{i+1,i} (30)$$

と書くことができる . $(i+1) \times i$ 行列のうち , 第 i+1 行を除いた部分を $T_{i,i}$ とする . このとき ,

$$V_i^* A A V_i = T_{i+1,i}^* V_{i+1}^* V_{i+1} T_{i+1,i}$$
(31)

$$= T_{i+1,i}^* T_{i+1,i} \equiv M_i \tag{32}$$

とおくと, M_i は対称正定値であることから, $M_i = U_i^*U_i$ と Cholesky 分解すれば,

$$U_i^{-*}V_i^*AAV_iU_i^{-1} = I (33)$$

を得るので, $AV_iU_i^{-1}$ は直交行列であることが分かる.これは $AK_i(A,v_1)$ についての正規直交基底を生成する. A^{-1} を $AK_i(A,v_1)$ に制限する射影は

$$U_i^{-*}(AV_i)^*A^{-1}AV_iU_i^{-1} (34)$$

$$= U_i^{-*} (AV_i)^* V_i U_i^{-1} \tag{35}$$

$$=U_i^{-*}T_{i,i}^*U_i^{-1} (36)$$

となるので, A^{-1} の固有ベクトルの近似は,

$$U_i^{-*} T_{i,i} U_i^{-1} t = \theta t (37)$$

または

$$M_i^{-1}T_{i,i}s = \theta s \tag{38}$$

から求められる.実際には

$$T_{i,i}^{-1}M_i s = \theta^{-1} s \equiv \tilde{\theta} s \tag{39}$$

を解く必要があるが,これは

$$T_{i,i} + t_{i+1,i}^2 T_{i,i}^{-1} e_i e_i^* (40)$$

から計算することができる . $\tilde{\theta}$ を A の調和 Ritz 値 (harmonic Ritz value) という .

5. 一般化固有值問題

5.1 アルゴリズム

次に一般化固有値問題

$$Ax - \lambda Bx = 0 \tag{41}$$

の場合を考える $^{11)}$. 以下では ${
m Petrov ext{-}Galerkin}$ 法によって近似最大固有対を計算する .

探索空間 $\mathrm{span}\{v_1,...,v_k\}$ 上の近似固有対 (θ,y) は , 試験部分空間 $\mathrm{span}\{w_1,...,w_k\}$ に対して以下の関係を満たすものとする .

$$AV_k y - \theta BV_k y \perp \{w_1, ..., w_k\} \tag{42}$$

 V_k , W_k を前節と同様に定義し , $(heta_k, y_k)$ を k 次元一般化固有値問題

$$W_k^* A V_k y_k - \theta_k W_k^* B V_k y_k = 0 \tag{43}$$

の解とする.このとき,A の固有対は $(\theta_k,\ u_k\equiv V_k y_k)$ で近似される. u_k は Petrov ベクトル, θ_k は Petrov 値と呼ばれる.u が固有ベクトルに収束するにつれて $Au\approx \lambda Bu$ となることから, W_k のとり方としては, AV_k と BV_k の線形結合とするのがよい.残差を $r=-(A-\theta_k B)u_k$ と定義すると,探索空間は,

$$(I - q_k q_k^*)(A - \theta_k B)(I - u_k u_k^*)z = -r \quad (44)$$

の解 $z \perp u_k$ により拡張される.ここで Petrov ベクトル u_k , 試験ベクトル q_k とも正規化されているものとする.一般化固有値問題に対する Jacobi-Davidson 法のアルゴリズムを図 3 にまとめる.

choose starting vectors v and w; set V = [v], W = [w], k = 0;for k = 0, ...compute eigenpairs (y, θ) of the projected eigenproblem $W^*AVy - \theta W^*BVy = 0$ of dimension k+1; select a solution y and associated Petrov value θ ; compute the Petrov vector u = Vyand the residual $r = Au - \theta Bu$; stop if u and θ are accurate enough; select a w in span $\{W\}$ and select $\tilde{u} \not\perp u$ and $\tilde{w} \not\perp w$; compute an approximate solution $z \perp \tilde{u}$ of the correction equation $\left(I - \frac{\tilde{w}w^*}{w^*\tilde{w}}\right)(A - \theta B)z = -r;$ if k is too large: select an l < k, select $k \times l$ matrices R_V , R_W and compute $V = VR_V, W = WR_W, k = l;$ select a $v \in \text{span}\{V, z\} \setminus \text{span}\{V\}$ and $V = [V \ v];$ select $\tilde{v} \notin \text{span}\{W\}$ and $W = [W, \tilde{v}];$

図3 一般化固有値問題への JD 法の適用

Fig. 3 Application of JD to generalized eigenproblems.

5.2 前 処 理

一般化固有値問題においても , 標準固有値問題と同様な方法で前処理を行うことができる $^{2),14)}$.

 M_k を $A- heta_k B$ の近似とする.この場合も,実際には

$$ilde{M}_k \equiv (I - q_k q_k^*) M_k (I - u_k u_k^*)$$
 (45)を用いる必要がある. $y \perp q_k$ に関する系

$$z \perp u_k, \quad \tilde{M}_k z = y \tag{46}$$

の解 z は , $\tilde{y} \equiv M_k^{-1} y$, $\tilde{q} \equiv M_k^{-1} q_k$ とおけば ,

$$z = \tilde{y} - \tilde{q} \left(\frac{1}{\mu} u_k^* \tilde{y} \right) \tag{47}$$

と書ける . z は

$$z \perp q_k, \quad \tilde{M}_k z = (I - q_k q_k^*) y \tag{48}$$

を満たす. ベクトル v に対する前処理は

 $y=(I-q_kq_k^*)(A-\theta_kB)(I-u_ku_k^*)v$ (49) のように表される.その後式(47) を行うことになるが,v が u_k と直交している場合には,これは $y=(A-\theta_kB)v$ と同値である.したがって, u_k に直交する初期ベクトルを選べば,これに($A-\theta_kB$)自身を作用させ,前処理式(47)を行えばよいことが分かる.

5.3 JDQZ 法

一般化固有値問題の場合,減次による複数固有値の 計算は以下のように行う⁶⁾.

ここでは , 問題 $(\beta A-\alpha B)q=0$ に関して , 部分一般 化 Shur 形 $AQ_{k-1}=Z_{k-1}S_{k-1}$, $BQ_{k-1}=Z_{k-1}T_k$ が得られていることを仮定する . 式 (21) と同様に , 適当な q , z を用いて , これを

$$A[Q_{k-1}, q] = [Z_{k-1}, z] \begin{bmatrix} S_{k-1} & s \\ & \alpha \end{bmatrix}, (50)$$

$$B[Z_{k-1}, z] = [Q_{k-1}, q] \begin{bmatrix} T_k & t \\ & \beta \end{bmatrix}$$
 (51)

に拡張することを考える.この関係から, $u\equiv Z_{k-1}^*(\beta A-\alpha B)q$ とすれば,一般化 Shur 対 $(q,\langle \alpha,\beta\rangle)$ について

 $Q_{k-1}^*q=0,\quad (eta A-lpha B)q-Z_{k-1}u=0 \ (52)$ を満たすことが分かるので,

$$Q_{k-1}^* q = 0, (53)$$

$$(I - Z_{k-1} Z_{k-1}^*)(\beta A - \alpha B)q = 0 (54)$$

が得られる.以上から, $(q,\langle\alpha,\beta\rangle)$ について

$$Q_{k-1}^* q = 0, (55)$$

$$(I - Z_{k-1} Z_{k-1}^*) (\beta A - \alpha B) (I - Q_{k-1} Q_{k-1}^*) q$$

= 0 (56)

が成り立つので , Shur 対 $(q,\langle \alpha, \beta \rangle)$ は , 減次された 行列の対

$$((I-Z_{k-1}Z_{k-1}^*)A(I-Q_{k-1}Q_{k-1}^*),$$
 $(I-Z_{k-1}Z_{k-1}^*)B(I-Q_{k-1}Q_{k-1}^*)$ (57) の固有対になっていることが分かる.JDQZ 法では,一般化固有値問題に対する Jacobi-Davidson 法を用いてこの固有値問題を解く.

5.4 調和 Petrov 値

au に近い固有値を求める場合,調和 Petrov 対 $(heta,u)=V_ks$ は, W_k を $W_k\equiv (A- au B)V_k$ となるよう(または $(A- au B)V_k$ と直交するよう)とれば,式 (43) の解から計算できる.

6. 他の手法との関係

6.1 Lanczos/Arnoldi 法

Jacobi-Davidson 法は加速付 Lanczos/Arnoldi 法と考えることができ,Ritz/Petrov 値を用いた場合の性質は,Lanczos/Arnoldi 系の解法と同様である.式 (11) において $\tilde{z}=-r$,すなわち $\alpha=0$,M=I である場合には,Jacobi-Davidson 法は Arnoldi 法と同等なアルゴリズムとなる.

このことから,Lanczos/Arnoldi 法と同様に,リスタート時の加速法を考えることができる.実際には,陰的リスタートを用いた Arnoldi 法^{5),8)}は,Jacobi-Davidson 法において,修正方程式の計算に前処理なしの1ステップの GMRES 法を用いた場合と同一のアルゴリズムとなることから,一般に Lanczos/Arnoldi 法での加速^{9),10)}は,Jacobi-Davidson 法における反復解法の計算に帰着されることが分かる.この意味で,Jacobi-Davidson 法は現時点で最良の固有値解法であるといえる.

6.2 非対称 Lanczos 法

非対称 Lanczos 法³⁾については , Bai らにより , ABLE (Adaptive Block Lanczos Method)¹⁾などの 手法が提案されている . 図 4 , 図 5 のような固有値分 布を持つ一般化固有値問題 では , Jacobi-Davidson 法とほぼ同等の精度で固有値を計算できる . ただしプレイクダウンの回避はアダプティブに行う必要がある .

7. まとめと今後の課題

本論文では ,アルゴリズムを中心に Jacobi-Davidson 法についての概要を述べた . 本手法は比較的新しい解 法であるため , Lanczos/Arnoldi 法との比較評価につ

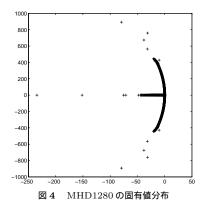


Fig. 4 Spectrum of MHD1280.

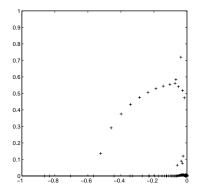


図 5 MHD1280の固有値の一部 (Alfvén part) Fig. 5 Alfvén part of the spectrum.

いては,まだ十分な結果が報告されていない 今後はこれらのアルゴリズムを中心に,大規模非対 称固有値問題に対する最適な手法の研究が進展してい

参 考 文 献

くものと思われる.

- Bai, Z., Day, D. and Ye, Q.: ABLE: An adaptive block Lanczos method for non-Hermitian eigenvalue problems, Technical Report 95-04, Department of Mathematics, University of Kentucky (1995).
- 2) Booten, J.G.L., van der Vorst, H.A., Meijer, P.M. and te Riele, H.J.J.: A preconditioned Jacobi-Davidson method for solving large generalized eigenvalue problems, Technical Report NM-R9414, Department of Numerical Mathematics, CWI (1994).
- 3) Cullum, J. and Willoughby, R.A.: A practical procedure for computing eigenvalues of large nonsymmetric matrices, *Large Scale Eigenvalue Problems*, Cullum, J. and Willoughby,

この問題は電磁流体力学で扱われる $^{2)}$.

Jacobi-Davidson 法による具体的な計算事例については, Sleijpen,Fokkema らによる文献 6),11)に詳細な報告があるので参考にされたい.

- R.A. (Eds.), North-Holland, pp.193–240 (1986).
- Davidson, E.R.: The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real symmetric matrices, J. Comp. Phys., Vol.17, pp.87–94 (1975).
- 5) Dongarra, J.J., Duff, I.S., Sorensen, D.C. and van der Vorst, H.A.: Numerical Linear Algebra for High Performance Computers, Society for Industrial and Applied Mathematics (1998).
- 6) Fokkema, D.R., Sleijpen, G.L.G. and van der Vorst, H.A.: Jacobi-Davidson style QR and QZ algorithms for the partial reduction of matrix pencils, Technical Report 941, Department of Mathematics, Utrecht University (1996).
- Jacobi, C.G.J.: Über ein leichtes Verfahren, die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen, Journal für die reine und angewandte Mathematik, pp.51–94 (1846).
- 8) Lehoucq, R.: ARPACK User's Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restorted Arnoldi Methods, Society for Industrial & Applied Mathematics (1998).
- Nishida, A.: Polynomial Acceleration for Large Nonsymmetric Eigenproblems, PhD Thesis, the University of Tokyo, Tokyo (1998).
- Saad, Y.: Numerical Methods for Large Eigenvalue Problems, Wiley, New York (1992).
- 11) Sleijpen, G.L.G., Booten, J.G.L., Fokkema, D.R. and van der Vorst, H.A.: Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems, *BIT*, Vol.36, No.3, pp.595–633 (1996).
- 12) Sleijpen, G.L.G. and van der Vorst, H.A.: The Jacobi-Davidson method for eigenvalue problems and its relation with accelerated inexact Newton schemes, Technical Report, Department of Mathematics, Utrecht University (1995).
- 13) Sleijpen, G.L.G. and van der Vorst, H.A.: A Jacobi-Davidson iteration method for linear eigenvalue problems, SIAM J. Matrix Anal. Appl., Vol.17, No.2, pp.401–425 (1996).
- 14) Sleijpen, G.L.G., van der Vorst, H.A. and

- Meijerink, E.: Efficient expansion of subspaces in the Jacobi-Davidson method for standard and generalized eigenproblems, Technical Report 1047, Department of Mathematics, Utrecht University (1998).
- 15) van der Vorst, H.A.: Jacobi-Davidson Methods for Symmetric Eigenproblems, Proc. Copper Mountain Conference on Iterative Methods, Vol.1, Copper Mountain, USA (1998).
- 16) van der Vorst, H.A.(著), 緒方秀教(訳): 超 大型固有値問題の解法,応用数理, Vol.8, No.4, pp.6-20 (1998).

(平成 12 年 5 月 3 日受付) (平成 12 年 9 月 7 日採録)

西田 晃(正会員)

1970 年生. 1995 年東京大学理学 部情報科学科卒業. 1998 年同大学院 理学系研究科情報科学専攻博士課程 修了. 理学博士. 同年より東京大学 大学院理学系研究科情報科学専攻助

手.反復解法,特に大規模固有値解法の研究に従事. SIAM,ACM,IEEE,日本応用数理学会,日本ソフトウェア科学会各会員.

小柳 義夫(正会員)

1943 年生. 1966 年東京大学理学部物理学科卒業. 1971 年同大学院理学系研究科物理学専門課程修了,理学博士. 同年同大学助手. 高エネルギー物理学研究所理論部門助手,

筑波大学電子情報工学系講師,助教授,教授を経て, 1991年東京大学理学部情報科学科教授.並列処理,数 値解析,計算物理学に関する研究に従事.特に,偏微 分方程式の高速並列解法,最小二乗法の数値計算,乱 数やモンテカルロ法に興味を持つ.物理学会,日本統 計学会,応用統計学会,計算機統計学会,応用数理学 会等会員.