中央大学博士論文

高次元重力理論と時空の4次元性

Yuichi Fukazawa 深澤 裕一

博士 (理学)

中央大学大学院 理工学研究科 物理学専攻

> 平成26年度 2015年3月

高次元重力理論と時空の4次元性

深澤 裕一

中央大学大学院 理工学研究科 物理学専攻

要旨

本論文では、高次元重力理論から得られる有効ポテンシャルを用いて初期宇宙を研究す る事で、高次元重力理論による量子効果を含んだインフレーション模型を構築した。この 模型では計量の余剰次元成分に含まれる radion をインフラトンとみなすため、インフラ トンの起源に関する一つの説明を与える。また、インフレーションによって radion の期 待値が小さくなる方向に時間発展する事で余剰次元の長さが縮む事にもなるため、インフ レーションとコンパクト化について同時に議論できるという長所がある。

本研究ではこの模型について具体的に調べ、広いパラメータ領域で実際の観測と無矛盾 なインフレーションを起こせる事を示した。

また、コンパクト化の力学についても考察し、高次元理論から出発して時空の4次元性 を力学的に説明できる可能性を示した。

目 次

第 1章	序論	7
第2章	高次元理論	11
2.1	高次元重力理論	12
	2.1.1 5次元重力理論	12
	2.1.2 高次元重力理論の量子効果	13
	2.1.3 高次元物質場理論	14
2.2	余剰空間の安定性..............................	15
第3章	インフレーション理論	17
3.1	標準宇宙モデル...............................	17
	3.1.1 標準宇宙モデル	17
	3.1.2 ビックバン理論における問題と解決	21
3.2	インフレーション理論	25
	3.2.1 インフレーション理論	26
	3.2.2 インフレーションによる揺らぎの生成	28
第 4章	5 次元重力理論による radion inflation 模型	37
4.1	インフレーションの条件	38
4.2	Radion inflation I	39
4.3	Radion inflation II	41
第5章	時空の4次元性	45
5.1	高次元カスナー計量	45
5.2	Brandenberger-Vafa 機構	47
5.3	高次元重力理論の量子効果と時空の4次元性	48
5.4	M ₁ × T ⁿ 理論における空間サイズの振舞	51
	5.4.1 1+4 次元時空における有効ポテンシャル	52
	5.4.2 有効ポテンシャル $V(\phi_{\alpha})$ の KK 和依存性と近似評価	53
	5.4.3 5次元時空における各空間サイズの変化	54

第6章	まとめと今後の展望	57
付録A	アインシュタイン重力理論における関係式	61
付録B	高次元重力理論の有効ポテンシャルの計算	63

第1章 序論

初めに

高次元理論は素粒子理論における標準模型の問題を解決する事ができる有力な候補で あり、弦理論においても重要な役割を担う。本研究では高次元重力理論における1ループ 有効ポテンシャルを初期宇宙論へ応用した。特に、次の2つのテーマについて研究した。 I) 高次元重力理論を用いたインフレーション模型の構築。インフレーション模型には幾 つかの課題がある事が知られているが、本論文で議論する radion inflation 模型では、こ れらの問題が解決され、少ないパラメータで観測を良く再現できる。II) 高次元重力理論 からの時空の4次元性の導出。高次元理論を用いた研究は4次元時空と余剰空間を予め区 別できると仮定している。しかし、なぜその様な区別が可能なのかは素粒子理論における 長年の懸案であるにも関わらず、場の理論を用いた議論は殆どされてこなかった。本論文 では、この問題への場の理論からのアプローチとして高次元重力理論による量子効果を考 察した。その結果、3次元空間が膨張すると同時に余剰次元が収縮し、4次元性を再現で きる可能性がある事を示した。

1. 高次元重力理論と自発的コンパクト化

高次元理論とは空間次元の数が3ではなく、より多くの空間があるとする理論である。 余剰空間はプランクスケール程度にコンパク化されているため観測と矛盾する事はない。 5次元理論は、自発的コンパクト化により、時空が4次元ミンコフスキー時空 M₄と5次 元目の空間 S¹の直積、M₄×S¹に位相分離される事で4次元時空の理論となる。自発的 コンパクト化とは、何らかの対称性の破れによって4次元時空と余剰空間が位相分離し、 コンパクト化された空間の大きさが自発的にプランクスケール程度まで小さくなる機構 である。

5次元アインシュタイン重力理論からは、4次元時空におけるアインシュタイン重力理 論、ゲージ理論、スカラー場の理論を導く事ができる。つまり、4次元アインシュタイン・ マクスウェル理論は5次元重力理論として統一的に記述される[1]。

5 次元重力理論には計量 g_{MN} の 55 成分 g_{55} に、4 次元時空に次元還元した理論の視点 でのスカラー場 ϕ が含まれている。スカラー場 ϕ の真空期待値は 5 次元目の空間の大き さ $L = 2\pi R \phi^{1/3}$ を決める。そのため、 ϕ は radion と呼ばれる。 $M_4 \times S^1$ 上の重力理論で は radion のポテンシャル $V(\phi)$ を計算する事で余剰空間の大きさをダイナミカルに求め られる。5次元重力ループの $V(\phi)$ への寄与は $V \propto -1/L^5$ となり、引力として振舞うた め S^1 コンパクト化された5次元目の空間を縮める [8, 11]。重力だけの理論では、ポテン シャルは原点に向かって $-\infty$ へ発散する。この引力ポテンシャルは次のように直感的に 理解することも可能である。平行な2枚の金属板間には、電磁場の真空ゆらぎによる引力 が働くことが知られており、カシミア力と呼ばれている。この引力によって金属板間の距 離は縮まる。我々の場合、電磁場の代わりに重力場を考え、2枚の金属板を置く代わりに 周期境界条件を課しているが、この場合は金属板間の距離に相当するコンパクト化の周期 が縮まるのである。重力場の真空ゆらぎによる効果は引力を与えるが、フェルミオン場の ゆらぎは逆の寄与を与えるため、フェルミオンを加えることで、有限のコンパクト化周期 でポテンシャルが最少となるようにすることができる [9, 10]。

2. Radion inflation

インフレーションとは初期宇宙で起こった加速度膨張の事である。宇宙論における標準 理論であるビックバン理論は減速膨張模型であるため、地平線問題、平坦性問題と呼ばれ る問題があることが知られている。これらの問題は不自然な初期条件をおくことでしか解 決できなかった。1981 年に佐藤勝彦、グースはこれらの問題は初期宇宙で加速度膨張が 起こっていたとすれば自然に解決できる事を指摘した [19]。さらに、インフレーション理 論はビックバン理論の問題を解決するだけでなく、構造形成の種となる揺らぎの生成も説 明でき、観測から支持されている。

代表的なインフレーション模型は、スカラー場であるインフラトンがポテンシャルを ゆっくり転がるために起こる。このインフレーション模型はスローロールインフレーショ ンと呼ばれる。インフレーションが実現されるには非常に滑らかなインフラトンポテン シャルが要求される。そのため、多くの模型ではインフレーションに都合が良いインフラ トンポテンシャルを手で与えている。本来、 インフレーションは初期宇宙の非常に高エ ネルギー領域で起きるであり、素粒子理論による記述が必要であるが、量子効果を含んだ ポテンシャルの形は複雑であるためインフレーションに適したポテンシャルを求める事は 困難である。従って、インフレーション模型には、インフラトンの理論的由来及び素粒子 理論に基づいたポテンシャルの導出に関して、さらなる研究の余地がある。

本論文でなし得た成果は以下の通りである。前述した様に、高次元重力理論には radion が既に含まれている。我々は radion をインフラトンと同一視する事で、インフラトンの 由来を高次元重力理論に求めた。その際のインフラトンポテンシャルは高次元重力理論の 量子効果から計算され、このポテンシャルによってインフレーションが起こる事を示した [37]。我々は、radion inflation 模型として、2つの模型を提案した。

1つの模型はI)5次元の宇宙項aと4次元宇宙項bを含む模型[7]、もう一つの模型はII)5 次元の宇宙項のみを含む模型である。本来、宇宙項は5次元のものと4次元のものを区別 する必要はないためII)の模型の方が自然である。しかし、パラメータの数が減ってしま うため観測にうまく模型を合わせるための自由度は減る。本論文では、まず自由度の大き い I) の模型で解析し、次により自然な II) の模型で解析した。

これらの理論のパラメータは物質場の質量 μ と個数c、5次元目の空間の半径R、radion の真空期待値 $\langle \phi \rangle$ 、及び宇宙項であり、少ないパラメータでインフレーションに適した模型を構成できる。

得られた具体的結果は以下の通りである。5次元目の空間の大きさを $L = 2\pi R \phi^{1/3}$ 、フェルミオンの個数を2としたとき、観測と整合するインフレーションを起こす事のできるパラメータ領域は、I)4次元宇宙項を含む模型では、 $L = (2.53 - 3.62) \times 10^{-17} \text{GeV}^{-1}$ 、 $\mu = 0.8 \text{GeV} - 4.15 \times 10^{16} \text{GeV}$ 、II)4次元宇宙項を含まない模型では、 $L = (4.42 - 4.84) \times 10^{-17} \text{GeV}^{-1}$ 、 $\mu = (4.61 - 5.04) \times 10^{16} \text{GeV}$ で与えられる。どちらの模型もパラメータ領域は広範囲に渡る。さらに、テンソル-スカラー比rは、 $\mathcal{O}(10^{-3})$ と小さくなる。いずれの模型でも観測結果を良く再現する事ができている。

3. 高次元重力理論と時空の4次元性

高次元理論は上述の長所があるが、しかし、観測されているのは3次元空間のみであ り、余剰空間はプランクスケール程度にコンパクト化されていなければならない。この事 情は弦理論でも同様である。

通常の高次元理論では4次元時空と余剰空間を予め分離した状態から議論を始める。例 えば、5次元理論であれば M₄ × S¹のように3次元空間を特別視し、余剰空間のみがコン パクト化されていると仮定する。しかし、なぜこのように分離されるのかは明らかではな い。なぜ3次元空間のみが特別大きくなり余剰空間は小さくコンパクト化されているのか という時空の4次元性については、場の理論を用いた議論は殆どされていない。

場の理論を用いて時空の4次元性を示すためには、全ての空間が同じサイズにコンパクト化されている状態から3次元空間のみが大きくなり、残りの空間は小さく留まると考える方が自然である。そこで、我々は、始めは空間方向が全てコンパクト化された状態 $R^1 \times T^{d-1}$ から、3次元空間 (T^3)のみ拡大し、($R^1 \times T^3$)× T^{d-4} となると考え、コンパクト化されたそ空間の大きさがどのように変化するか調べた。そのために $R^1 \times T^{d-1}$ 上での 重力+フェルミオン理論における1ループ有効ポテンシャルを計算した。高次元重力理論 において、コンパクト化された空間の大きさはradionによって決まる。d次元重力理論に は (d-1) 個の radion $\phi_1, \phi_2, \dots, \phi_{d-1}$ が含まれており、高次元重力理論のループダイア グラムから $V(\phi_1, \dots, \phi_{d-1})$ を得る。重力理論だけでは安定な真空が得られない事から、d次元の質量を持つフェルミオンを加え、1ループ有効ポテンシャルを計算する事で各空間 の大きさの変化を評価する。本論文では、具体的に d=5 の時、即ち5次元時空における ポテンシャルを解析した。その際、簡単化のため、空間3次元は同様の振舞をすると仮定 した。その結果、コンパクト化された各空間の大きさは、必ずしも全空間のサイズを同じ に取らなくても、例えば、各空間の大きさを L_1, L_2, L_3, L_4 とすると、 $L_1 = L_2 = L_3 < L_4$ や $L_1 = L_2 = L_3 > L_4$ などで安定となり得る事が解った。これは、3次元空間のみ大きく 4次元目の空間が縮まる可能性を示す上での非常に示唆的な結果であると考えている。

4. 本論文の構成

本論文の構成は以下の通りである。2章では高次元理論について述べる。高次元重力理 論と物質場から生じる1ループ有効ポテンシャルの評価と余剰空間の安定性について解説 する。3章では宇宙論の標準モデルとインフレーション理論について紹介する。4章では5 次元重力理論による radion inflation 模型について議論し、観測を良く再現できる模型で ある事を示す。5章では高次元重力理論の量子効果によって、時空の4次元性を導出でき る可能性を示す。

第2章 高次元理論

本章では高次元理論から生じるポテンシャルによってコンパクト化された空間のサイズ がどのように振舞うか議論する。2.1.1 節では5次元重力理論から4次元重力とゲージ理 論を導き、カルツァとクラインが示した重力理論とゲージ理論の統一的記述の可能性につ いて解説する。高次元理論はコンパク化によって高次元時空の理論を4次元時空理論にし たときに、元々考えていた理論に現れる粒子より低いスピンの粒子が現れる。5次元重力 場のスピン2の重力子 g_{MN} 、 $M = 0, \cdots, 3, 5$ を考えれば、スピン1のゲージ粒子 A_{μ} 、ス ピン0のスカラー粒子 ϕ が現れる。特に、5次元ゲージ場 A_M をコンパクト化するとスピ ン0のスカラー粒子が現れ、この粒子をヒッグス粒子とみなすゲージ・ヒッグス統一模型 では、ヒッグス粒子の起源は高次元ゲージ場となり、ヒッグス粒子に対する微調整問題を 解決できる [17]。

5次元理論では、5次元目の空間はコンパク化され S^1 となる。通常観測される時空 M_4 と5次元目の空間 S^1 、 $M_4 \times S^1$ の理論として記述される。6次元以上の時空で記述される 理論は余剰空間のさまざまなコンパクト化の仕方がある。例えば、曲率を持たないトーラ ス T^n や正曲率をもつ S^n などがある。コンパクト化の方法によって、高次元理論から導 かれる4次元時空の理論は異なってくる。高次元理論を用いた模型をつくる時、コンパク ト化された空間のサイズが安定になるかが重要な問題になる。余剰空間の大きさは高次元 重力理論の計量 g_{MN} に含まれるスカラー場 ϕ の真空期待値 (ϕ) によって決まる [8]。

d次元ミンコフスキー時空 M_d から自発的コンパクト化により $M_d \to M_4 \times T^n$ に位相分離した後、重力ループ、フェルミオンループから生じるポテンシャル $V(\phi)$ を計算する事で、余剰空間のサイズがどのように変化するか説明する。2.1.2 節では高次元重力理論の1ループ有効ポテンシャル $V_{\text{gra}}(\phi)$ を示し、 $V_{\text{gra}}(\phi)$ によって余剰空間が縮まる事を説明する。2.1.3 節では高次元物質場のループを計算する事で $V_{\text{fer}}(\phi)$ を求める [9, 10]。2.2 節では余剰空間次元のサイズの安定性について議論する。

2.1 高次元重力理論

2.1.1 5次元重力理論

本節では、4+1次元時空における重力理論について解説する。5元重力理論における 計量 g_{MN} の55成分である g_{55} に4次元時空に次元還元した理論の視点でのスカラー場 ϕ が含まれている。 ϕ はコンパクト化された空間の radius の大きさを決める粒子となる事か ら radion と呼ばれる。

5次元アインシュタイン重力理論の作用は[8]、

$$S_5 = \frac{1}{16\pi G_5} \int d^5 x \sqrt{-\bar{g}} \, {}^5R, \qquad \bar{g}_{MN} = \phi^{-1/3} g_{MN} \equiv \phi^{-1/3} \begin{pmatrix} g_{\mu\nu} + A_{\mu}A_{\nu}\phi & A_{\mu}\phi \\ A_{\nu}\phi & \phi \end{pmatrix}. (2.1)$$

平坦な時空では $g_{MN} = \eta_{MN} = \text{diag}(-1, +1, +1, +1)$ 、 ⁵*R* は 5 次元リッチスカラー、 $G_5 \equiv G_4 L_5$ は 5 次元重力定数である。 $\phi^{-1/3}$ はワイル因子と呼ばれ、高次元重力理論から 4 次元理論に次元還元したときにアインシュタイン重力理論が再現できる様に選ばれてい る。本論文中で用いるアインシュタイン重力理論の定義は付録.A に纏めた。本節では 5 次 元時空についての添字はラテン文字 $M = 0, \dots, 3, 5, 4$ 次元時空についてはギリシャ文字 $\mu = 0, \dots, 3$ で表す。線素は、

$$ds^{2} = \phi^{-1/3} \left(g_{\mu\nu} + A_{\mu}A_{\nu}\phi \right) dx^{\mu}dx^{\nu} + 2\phi^{2/3}A_{\mu}dx^{\mu}dx^{5} + \phi^{2/3}dx^{5}dx^{5},$$

となり、スカラー場 ϕ が5次元目の空間のサイズを決め、ゲージ場 A_{μ} が4次元時空と5次元目の空間を結んでいる。ここで、

$$x^{'M} = x^M - \delta x^M, \tag{2.2}$$

とすると、5次元計量 g_{MN} は

$$g'_{MN} = \left(\delta^{P}_{\ M} + \partial_{M}\delta x^{P}\right) \left(\delta^{Q}_{\ N} + \partial_{N}\delta x^{Q}\right) g_{PQ}$$

$$\simeq g_{MN} + \partial_{M}\delta x^{P} g_{PN} + \partial_{N}\delta x^{Q} g_{MQ}, \qquad (2.3)$$

$$g'_{\mu5} = g_{\mu5} + \partial_{\mu}\delta x^{P}g_{P5} + \partial_{5}\delta x^{Q}g_{\mu Q}.$$

$$(2.4)$$

この結果、5次元計量 g_{MN} の $g_{\mu 5}$ に含まれる4次元ゲージ場 A_{μ} は次の様に変換される。

$$A'_{\mu} = A_{\mu} + \partial_{\mu} \delta x^5. \tag{2.5}$$

従って、U(1)ゲージ変換とみなす事ができる。よって、4次元時空におけるゲージ変換

は5次元時空における一般座標変換の一部である事が解る。これは4次元で現れるゲージ 変換の起源が高次元時空の幾何学である事を示している。

 M_5 の対称性をもつ理論から空間1次元が S^1 コンパクト化され、 $M_4 \times S^1$ 時空の理論になったと仮定する。5次元目の空間に周期境界条件を課した事により \bar{g}_{MN} はフーリエ展開され、

$$\bar{g}_{MN}\left(x^{\mu}, x^{5}\right) = \sum_{n=-\infty}^{\infty} \bar{g}_{MN}^{(n)}\left(x^{\mu}\right) e^{inx^{5}/R_{5}}.$$
(2.6)

nはカルツァ・クラインモードと呼ばれ、特にn = 0のときをゼロモードと呼ぶ。 g_{55} のゼ ロモード $g_{55}^{(0)} = \phi^{(0)}$ をradionと呼ぶ。5次元目座標は、

$$0 \le x^5 < 2\pi R_5. \tag{2.7}$$

物理的な5次元目の空間のサイズは

$$\int_{0}^{2\pi R_5} dx^5 \sqrt{\bar{g}_{55}} = 2\pi R_5 \phi^{1/3} \equiv L_5^{\text{phys}}.$$
(2.8)

コンパクト化する事で高次元理論特有の粒子、カルツァ・クライン粒子 (KK 粒子) が現れる。この粒子の質量は $(n/R_5)^2$ 程度になる。 R_5 はプランクスケール程度と考えられているため KK 粒子は非常に重くなり、低エネルギーの物理には効いてこない。そのため、低エネルギーの物理を考える時はゼロモードにのみ注目すれば十分である。5 次元重力理論を4 次元理論に次元還元し、ゼロモードのみに注目すると [4, 5, 8]、

$$S_4 = \frac{1}{16\pi G_4} \int d^4x \sqrt{-g} \left[{}^4R - \frac{1}{4}\phi F_{\mu\nu}F^{\mu\nu} - \frac{1}{6}\frac{\partial_\mu\phi\partial^\mu\phi}{\phi^{-2}} \right],$$
(2.9)

ここで、 $g_{\mu\nu}$ は4次元の計量、 ${}^{4}R$ は4次元のスカラー曲率、 $G_{4} = G_{5}/2\pi R_{5}$ 、 $F_{\mu\nu}$ は可換 ゲージ理論における場の強さ、 $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ である。カルツァとクラインは、(2.9) の1項目と2項目から、アインシュタイン-マクスウェル理論が導かれる事を示した。ま た、ゲージ場が存在しないときは、ブランス-ディッケ理論と呼ばれる、スカラー・テンソ ル理論となる。このように、4次元時空では異なる理論と考えられた理論は高次元理論を 用いる事で統一的に記述する事が可能となる。

2.1.2 高次元重力理論の量子効果

5次元重力理論を考える時、なぜ5次元目の空間が小さく留まっているのかは高次元理 論における懸案であった。アペルキストとチョドスは高次元重力理論の量子効果によって、 5次元目の空間が小さくなる事を示した [8]。この機構はカルツァ・クライン理論において 重要な機構となっている。高次元理論における1ループ有効ポテンシャルは、KK 粒子が ループに現れる事で特徴的なポテンシャルとなる。本節では、5次元重力理論の量子効果 によって S¹ コンパクト化された5次元目の空間がプランクスケール程度に縮まる事を解 説する。

5 次元重力理論の作用は (2.1) で与えられる。高次元重力ループのポテンシャルへの寄 与 V_{gra} (*φ*) は、

$$V_{\rm gra}(\phi) = -\frac{3\zeta(5)}{64\pi^2} \frac{1}{L^4 \phi^2}, \qquad L = 2\pi R_5.$$
(2.10)

高次元重力理論では、予め理論に含まれていたスカラー場によって5次元目の空間が自然 に小さくなる。(2.10)から、V_{gra}(φ)は −∞ へ発散してしまう (図 2.1)。重力ループからの 寄与のみではコンパクト化された空間のサイズは不安定であるので、フェルミオンを入れ る事でポテンシャルを安定化する。

2.1.3 高次元物質場理論

重力場は全ての場と相互作用する。本節では高次元重力と相互作用する高次元物質場 から得られる有効ポテンシャルについて解説する。物質場としてフェルミオン ψ を選ぶ と、1ループ有効ポテンシャルへの寄与 V_{fer} は重力ループから生じる V_{gra} とは逆符号とな り、斥力となる。そのため、コンパクト化された空間のサイズを拡大させる。重力場は質 量ゼロであるのに対し、質量を持つフェルミオン ψ からのポテンシャルへの寄与は質量 の影響により、質量ゼロの場からの寄与とに差が生じる。このため、高次元重力場に質量 を持つフェルミオン ψ を加えれば安定な真空を得る事ができる [9, 10]。5 次元時空での ψ の作用はフェルミオンの質量を μ とすると、

$$S_5 = \int d^5x \sqrt{-\bar{g}} \left[\bar{\psi} \left(i\gamma^M \partial_M - \mu \right) \psi \right].$$
(2.11)

計量は 5 次元重力理論と同様 (2.4) とする。フェルミオンループからのポテンシャルへの 寄与 $V_{\text{fer}}(\phi,\mu)$ として次式を得る。cはフェルミオンの個数である。

$$V_{\text{fer}}(\phi,\mu) = c \cdot \frac{3}{64\pi^2} \frac{1}{L^4 \phi^2} \times \left[Li_5 \left(e^{-2L\mu\phi^{\frac{1}{3}}} \right) + 2L\mu\phi^{\frac{1}{3}} Li_4 \left(e^{-2L\mu\phi^{\frac{1}{3}}} \right) + \frac{4}{3} \left(L\mu\phi^{\frac{1}{3}} \right)^2 Li_3 \left(e^{-2L\mu\phi^{\frac{1}{3}}} \right) \right].$$
(2.12)

Li_nはポリログ関数であり、次式で定義される。n は整数である。

$$Li_n(u) = \sum_{k=1}^{\infty} \frac{u^k}{k^n}.$$
 (2.13)

2.2 余剰空間の安定性

本節では5次元時空における余剰空間のサイズの安定性を解説する。高次元理論を用いるとき、コンパクト化された余剰空間のサイズの安定性は常に問題になる。重力ループ、フェルミオンループからの寄与から、有効ポテンシャルV(φ)は

$$V(\phi) = V_{\text{gra}}(\phi) + V_{\text{fer}}(\phi, \mu)$$

= $-\frac{3\zeta(5)}{64\pi^2} \frac{1}{L^4 \phi^2}$
+ $c \cdot \frac{3}{64\pi^2} \frac{1}{L^4 \phi^2} \left[Li_5\left(e^{-2L\mu\phi^{\frac{1}{3}}}\right) + 2L\mu\phi^{\frac{1}{3}}Li_4\left(e^{-2L\mu\phi^{\frac{1}{3}}}\right) + \frac{4}{3}\left(L\mu\phi^{\frac{1}{3}}\right)^2 Li_3\left(e^{-2L\mu\phi^{\frac{1}{3}}}\right) \right].$ (2.14)

5次元目の空間のサイズの変化を議論するために式 (2.14) を radion ϕ が小さい領域と大きい領域について近似式で評価する。radion ϕ の小さい領域では、

$$V(\phi) = -\frac{3\zeta(5)}{64\pi^2} \frac{1}{L^4\phi^2} + c \cdot \frac{3\zeta(5)}{64\pi^2} \frac{1}{L^4\phi^2}.$$
(2.15)

 $\zeta(5) = 1.03 \cdots$ である。一方、radion ϕ の大きい領域では、

$$V(\phi) = -\frac{3\zeta(5)}{64\pi^2} \frac{1}{L^4 \phi^2},$$
(2.16)

となる。(2.15)から、安定な真空を得るためにはフェルミオンの個数 c は 2 以上必要である事がわかる。

図 2.1: Radion ϕ の小さい値ではフェルミオンからの寄与が大きいため、空間は拡がる。しかし、 ϕ の大きい領域では重力からの寄与の方が大きいため、空間は縮まる。その結果、安定な真空を得る。2 重破線は $V_{\text{gra}}(\phi)$ を表し、破線は $V_{\text{fer}}(\phi,\mu)$ 、実線は $V(\phi) = V_{\text{gra}} + V_{\text{fer}}$ を表す。

第3章 インフレーション理論

宇宙論は、宇宙は一様等方であるとする宇宙原理に基づいて議論が展開される。現在の 宇宙はフリードマン-ルメートル宇宙模型として記述される。この模型によれば宇宙は高 温高密度状態から始まり、膨張とともに温度が低くなり元素が作られ現在の宇宙を形成す る。ビックバン理論と呼ばれるこの模型は現在の宇宙に存在する元素分布や構造形成をう まく説明でき、宇宙論における標準模型とされている。3.1節ではフリードマン-ロバート ソン-ウォーカー計量に基づいた宇宙模型について解説する。

ビックバン理論には原理的な問題が幾つか存在する。地平線問題、平坦性問題と呼ばれ る問題はビックバン理論では不自然な初期条件をおくことでしか説明できない。佐藤勝 彦、グースらはインフレーション理論によってこれらの問題は自然に解決される事を指摘 した [19]。さらに、観測から示されている揺らぎの起源も説明する事ができる。現在の大 規模構造が形成されるために必要な揺らぎもインフレーションによって作られる事が示さ れ、観測からも支持されている。3.2節ではインフレーション理論について解説する。

インフレーション理論は多種多様な模型が存在する。しかし、その多くはインフレー ションに適したポテンシャルを手で与えているため理論的な予言力には乏しい。一方、素 粒子理論から導かれるインフレーション模型は理論的予言力はあるものの、ポテンシャル の形が複雑になるためインフレーションに適したポテンシャルを導くには困難が生じる。 このジレンマの解決方法の一つが高次元理論を用いる事である [27]。

3.1 標準宇宙モデル

3.1.1 標準宇宙モデル

観測から宇宙は十分大きなスケールでは物質の分布は一様であり等方的である。宇宙論 を議論するとき、宇宙は大局的には一様等方であるという宇宙原理に基づく。一様等方な 宇宙は曲率 *K* の値によって3つにわけられる。

i.K > 0

曲率 K が正のとき3次元空間は3次元球面として閉じた空間となる。

ii.K = 0

曲率 K が0の時は平坦な3次元空間となる。

iii.K < 0

曲率 K が負のとき 3 次元空間は 3 次元双曲面として開いた空間となる。

このような一様等方宇宙はフリードマン-ロバートソン-ウォーカー計量で記述される [24, 25]。

$$ds^{2} = -dt^{2} + a^{2}(t) \, d\sigma^{2}. \tag{3.1}$$

 $d\sigma^2$ は一様等方な3次元計量あり、極座標 (χ, θ, ϕ) を用いると曲率 K の値の符号によって $d\sigma^2$ は次式で与えられる。

$$d\sigma^2 = \frac{dr^2}{1 - Kr^2} + r^2 \left(d\theta^2 + \sin^2 \theta d\phi^2 \right), \qquad (3.2)$$

$$r = \begin{cases} \frac{1}{\sqrt{K}} \sin \sqrt{K\chi} & (K > 0) \\ \chi & (K = 0) \\ \frac{1}{\sqrt{-K}} \sinh \sqrt{-K\chi} & (K < 0) \end{cases}$$
(3.3)

(3.1) に現れる a(t) はスケール因子と呼ばれる。一様等方な宇宙ではエネルギー密度 ρ が時間 t のみの関数となる様に選ぶ事ができ、空間は t = -定 となる超曲面となる。a(t) は空間サイズの時間依存性を表すためスケール因子と呼ばれる。また、現在の時刻 t_0 におけるスケール因子 $a \epsilon a(t_0) = 1$ とする。(3.1) は宇宙のスケール変化に伴い、座標が観測者とともに動く座標系である事から共動座標と呼ばれる。共動座標では空間座標は物質に対して静止している様に見える。

宇宙の発展はアインシュタイン方程式に従う。

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = -8\pi G T_{\mu\nu}.$$
(3.4)

本節では時空を4次元とし、 $\mu = 0, \dots 3$ とする。 $g_{\mu\nu}$ は4次元計量、 $R_{\mu\nu}$ はリッチテンソル、 Rはリッチスカラー、重力定数 $G = 1/(8\pi M_P^2)$ 、既約プランク質量 $M_P = 2.44 \times 10^{18}$ GeV、 $T_{\mu\nu}$ はエネルギー運動量テンソルである。(3.4)の右辺は物質の運動量やエネルギーを表す が、一様等方時空では完全流体の形となり、次式の様になる。

$$T_{\mu\nu} = \begin{pmatrix} -\rho & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix},$$
(3.5)

3.1. 標準宇宙モデル

 ρ はエネルギー密度、pは運動量である。 $T_{\mu\nu}$ を完全流体の形としたとき、アインシュタイン方程式から次の2式を得る。 $\dot{a} = da/dt$ である。

$$-\frac{2K}{a^2} - \frac{2\dot{a}^2}{a^2} - \frac{\ddot{a}}{a} = -4\pi G \left(\rho - p\right), \qquad (3.6)$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + 3p\right).$$
 (3.7)

これらの式から、宇宙の膨張を表すフリードマン方程式、

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{4\pi G}{3}\rho - \frac{K}{a^2},\tag{3.8}$$

を得る。同様にエネルギー保存則を得る。

$$\dot{\rho} = -3H\left(\rho + \mathbf{p}\right), \qquad H \equiv \frac{\dot{a}\left(t\right)}{a\left(t\right)}.$$
(3.9)

*H*はハッブルパラメータであり、時刻*t*での宇宙の膨張率を表す。宇宙の共動体積は $V \propto a^3$ であるので、全エネルギーは $E \propto \rho a^3$ となる。(3.9)から

$$\frac{dE}{dt} + p\frac{dV}{dt} = 0. aga{3.10}$$

(3.10) は断熱過程での熱力学第一法則であり、宇宙の膨張は断熱的である事を示す。

宇宙の構造はスケール因子 a(t)、エネルギー密度 $\rho(t)$ 、圧力 p(t) と曲率 K によって決定される。宇宙を構成する物質は、

$$p = \omega \rho, \tag{3.11}$$

としたとき、 ω の値によって3つに分類される。 ω の値が $\omega = 1/3$ のとき相対論物質、 $\omega = 0$ のとき非相対論的物質、 $\omega = -1$ のとき宇宙定数となる。式 (3.9)から、

$$\rho \propto a^{-3(1+\omega)},\tag{3.12}$$

となり、どの物質が宇宙を支配しているかによってスケール因子の時間変化に違いが生 じる。粒子数 N は変化しないとすると、各物質の優勢期にスケール因子は以下の様に振 舞う。

1. 非相対論的物質

非相対論的物質とは星などを構成する物質であり、 $\omega = 0$ である。半径aの球内の 粒子数が不変であるとし、粒子数Nは粒子数密度をnとすると、

$$N = \frac{4\pi}{3}n(t)a(t)^{3} = -\bar{z}, \qquad (3.13)$$

であり、 $n(t) \propto a(t)^{-3}$ となる。 $p \ll \rho$ であるため、エネルギー密度 $\rho_m(t)$ は、

$$\rho_m \propto a \left(t \right)^{-3}, \tag{3.14}$$

となる。非相対論的物質が宇宙を支配している時期ではスケール因子 a は、

$$a(t) \propto t^{2/3},$$
 (3.15)

と振舞う。

2. 相対論的物質 相対論的物質の代表例は光子であり、 $\omega = 1/3$ である。 $p = \rho/3$ のとき、エネルギー 密度 $\rho_r(t)$ は、

$$\rho_r \propto a \left(t \right)^{-4} \tag{3.16}$$

となり、相対論的物質が宇宙を支配している時期ではスクール因子 a は

$$a(t) \propto t^{1/2},$$
 (3.17)

と振舞う。

3. 宇宙定数

 $\omega = -1$ のときであり、 $p = -\rho$ となる。また、 ω が負の値を持つとき、ダークエネ ルギーと呼び、ダークエネルギーが支配的な宇宙は指数関数的な膨張をする。

現在の宇宙は膨張している事が観測から示されている。これは、過去に遡ると宇宙は 小さくなる事を意味している。*a*がゼロに近づくにつれ宇宙は高温高密度になる。宇宙が 高温高密度の状態から始まり、膨張するに従い密度が薄まり現在の宇宙を形成する模型を ホットビックバン模型と呼ぶ。ホットビックバン理論は元素合成や大規模構造の形成など を非常に良く説明できる。しかし、ホットビックバン理論では解決できない問題が幾つか ある。地平線の大きさ、宇宙の平坦性などはビックバン理論では不自然な初期条件なしで は説明できない。この不自然な初期条件を考えざるを得ない状況は地平線問題、平坦性問 題と呼ばれる。これらの問題はインフレーション理論を考える事で自然に解決される。次 節では、地平線問題、平坦性問題について解説し、インフレーションによっていかに解決 されるか解説する。

3.1.2 ビックバン理論における問題と解決

宇宙論を議論する時に有用な種々のパラメータについて解説する。現在の宇宙の臨界密 度 ρ_{c0} は、

$$\rho_{c0} \equiv \frac{3H_0^2}{8\pi G},\tag{3.18}$$

である。臨界密度は空間の曲率が正、又は負となる境界の密度である。非相対論的物質、 相対論的物質、宇宙定数についての密度パラメータΩは次式で定義される。

$$\Omega_m \equiv \frac{\rho_{m0}}{\rho_{c0}}, \qquad \Omega_r \equiv \frac{\rho_{r0}}{\rho_{c0}}, \qquad \Omega_\lambda \equiv \frac{\rho_{\lambda 0}}{\rho_{c0}}.$$
(3.19)

宇宙の曲率は曲率パラメータ K によって表される。曲率パラメータ K は密度パラメータ Ω によって記述され、

$$K \equiv H_0^2 \left(\Omega_m + \Omega_r + \Omega_\Lambda - 1\right), \qquad (3.20)$$

となる。(3.20)は、宇宙を組成する物質によって曲率が決まる事を示している。添字0は 現在の値を表す。現在の宇宙は観測から、 $\Omega_m = 0.27 \pm 0.04$ 、 $\Omega_{\Lambda} = 0.73 \pm 0.04$ である。 $\Omega_m \simeq 0.27$ のうち、ダークマターの密度は $\Omega_{DM} \simeq 0.23$ であり、物質密度の大部分はダー クマターである事が示されている[30]。そのため、ダークマターとしてどの様な種類の粒 子を選ぶかで理論からの予測が大きく変わる。 ρ/ρ_0 は次式で与えられる。

$$\frac{\rho}{\rho_{c0}} = \Omega_{\Lambda} + \Omega_m \left(\frac{a}{a_0}\right)^3 + \Omega_r \left(\frac{a}{a_0}\right)^4.$$
(3.21)

物質が支配的な時期のエネルギー密度は $\rho_m \propto a^{-3}$ 、放射が支配的な時期のエネルギー密度は $\rho_r \propto a^{-4}$ 、宇宙項が支配的のエネルギー密度は $\rho_{\Lambda} = 定数$ である。物質優勢宇宙では、スケール因子は $a \propto t^{2/3}$ 、放射優勢宇宙では、スケール因子は $a \propto t^{1/2}$ となり、いずれの時期も減速膨張していた事がわかる。後に述べる様に、地平線問題の本質は宇宙が減速膨張していた事にある。

次に宇宙論における地平線 (地平面) について解説する。地平線について議論するため に共形時間 η を導入する。

$$d\eta \equiv \frac{dt}{a\left(t\right)}.\tag{3.22}$$

であり、共形時間ηを用いる事で計量は

$$ds^{2} = a^{2}(t) \left[-d\eta^{2} + d\sigma^{2} \right], \qquad (3.23)$$

と書く事ができる。このため、光的測地線 $ds^2 = 0$ はスケール因子 a に依らず、

$$-d\eta^2 + d\sigma^2 = 0, (3.24)$$

となるため地平線についての議論が簡単になる。

時刻 t から過去に遡って光円錐を描き、 t_1 における時刻一定の空間超曲面と交わる曲面 を考える (図 3.1)。その半径は、ある時刻 t から過去に遡って因果律を持てる半径を地平 線と呼び $r_P(t)$ とすると、

$$r_P(t) = a(t) \int_{t_1}^t \frac{dt'}{a(t')}, \qquad r_P(t) = a(t) \eta(t).$$
(3.25)

スケール因子は

$$a \propto t^n, \qquad n = \frac{2}{3\left(1+\omega\right)},$$
(3.26)

となり、 $\omega > -1/3$ であれば宇宙は減速膨張となる。粒子的地平線は放射優勢期では $r_P = 2t$ 、物質優勢期では $r_P = 3t$ となる。

地平線問題

現在の宇宙は一様等方である。つまり、過去に遡った時、 t_r において全ての領域が相 互作用していなければならない。減速膨張宇宙では地平線は $r \simeq t$ 程度であり、 t_r におい て因果律をもつ範囲は 1.6°程度である (図 3.1)。つまり、宇宙初期において殆どの領域は 互いに因果律を満たさない。しかし、観測からこの時期には $\delta T/T \simeq 10^{-5}$ 程度の揺らぎ があった事が示されている。この観測事実は地平線の大きさを超えた領域でも相互作用 していなければならない事を意味しており、減速膨張から得られる結論と矛盾している。 すなわち、相互作用がなかったにも関わらず全ての領域が同じ状態でなければならない。 標準宇宙論ではこのような一様等方性は初期条件として仮定するしかないが、この様な初 期条件は不自然である。これを地平線問題と呼ぶ。

地平線問題はインフレーションによって解決される。インフレーション中はスケール因 子 *a* は指数関数的に膨張する。

$$a(t) = a(t_f) \exp(-H_f(t_f - t)),$$
 (3.27)

 t_i はインスレーションが始まる時刻、 t_f はインフレーションが終了する時刻である。地平線は、

$$r_p(t) = \frac{a(t_r)}{a_f H_f} \left(e^{H_f(t_f - t_i)} - 1 \right), \qquad (3.28)$$

図 3.1: 地平線問題

となる。(3.28)より、地平線はインフレーション中に指数関数的に増大する。インフレー ションが十分な期間続けば、インフレーションが終了した時点で現在のホライズンサイ ズを超える。よって、インフレーションが起これば地平線問題が解決される。インフレー ションは急激な膨張を引き起こす。そのため、適当な期間で終了しなければ宇宙は膨張し すぎてしまうため現在の大規模構造などは形成されない。よって、インフレーションがど の程度の期間続けば良いか決めなくてはならない。インフレーションの開始時 t_i と終了 時 t_f でスケール因子 a(t) は次式の量だけ増加する。

$$\frac{a(t_f)}{a(t_i)} = \exp\left[\int_{t_i}^{t_f} Hdt\right] = \exp\left[\int_{\phi_i}^{\phi_f} \frac{Hd\phi}{\dot{\phi}}\right] \simeq \exp\left[-\int_{\phi_i}^{\phi_f} \left(\frac{8\pi GV(\phi)}{V'(\phi)}\right) d\phi\right].$$
(3.29)

この増加量の log をとった指数は e-folding 数 N と呼ばれ、インフレーションがどの程度の時間続いたのかを表す指数となり、次式で定義される。

$$\mathcal{N} \equiv \left| \ln \frac{a(t_f)}{a(t_i)} \right| = \int_{t_i}^{t_f} H dt \simeq \frac{1}{M_p^2} \int_{\phi_f}^{\phi_i} \frac{V}{V'} d\phi, \quad G = \frac{1}{8\pi M_p^2}.$$
 (3.30)

インフレーション開始時の地平線サイズ H_s は現在は $a_f H_s^{-1} e^N$ の大きさになる。これ が現在の地平線サイズ H_0^{-1} より大きければ良い。よって、

$$e^{\mathcal{N}} > \frac{a_f H_f}{a_0 H_0},\tag{3.31}$$

を満たせば良い。地平線問題を解決するためには N ~ 50 - 60 程度である必要がある。

図 3.2: インフレーション中のスケール変化 [21]。

平坦性問題

ビックバン理論には地平線問題の他に平坦性問題と呼ばれる問題がある。観測から現在の曲率は

$$\Omega = 1.01 \pm 0.02, \tag{3.32}$$

であり、ほぼ平坦である。つまり、現在の曲率半径は現在のハッブル半径よりも十分大き くなくてはならない。そのため、曲率を正 (K > 0)とすると、

$$\left(\frac{K}{a_0^2}\right)_{\text{ill}} \ll \frac{H_0^2}{c^2} \simeq 10^{-56} \text{cm}^{-2}.$$
 (3.33)

a は放射優勢期には $t^{1/2}$ に比例して増加し、物質優勢期では $t^{2/3}$ に比例して増加してきた。 (3.33) が実現されるためのプランク温度時の曲率は、現在の温度を T_0 、プランク温度を T_p とすると $a_0/a_p = T_p/T_0 \simeq 10^{32}$ であるため、

$$\left(\frac{K}{a_p^2}\right)_{\text{ijj}} \ll 10^8 \text{cm}^{-2},\tag{3.34}$$

となる必要がある。一方、プランク温度のときの曲率は (プランク長)⁻² 程度が自然であため、

$$\left(\frac{K}{a_p^2}\right)_{\underline{\pi}\underline{a}\underline{a}} \simeq 10^{66} \mathrm{cm}^{-2},\tag{3.35}$$

程度になると考えられる。観測から予測される値 (3.34) と理論から予測される値 (3.35) に は $O(10^{58})$ 以上の差が生じる。つまり、理論から予測される自然な値よりも 58 桁以上小 さい値を初期条件として課さなければならない。このような初期条件は不自然であり、平 坦性問題と呼ばれる。

インフレーションが起これば空間は急激な加速度膨張によって大きくなる。その結果、 観測される領域はほぼ平坦になる (図 3.3)。インフレーションによってスケール因子 a が e^{N} 程度大きくなるとすると、 $K/(aH^{2})$ の値はインフレーションを経る事で e^{-2N} 程度大 きくなる。現時刻での Ω の値は、

$$|\Omega - 1| = \frac{|K|}{a_0^2 H_0^2} = e^{-2\mathcal{N}} \left(\frac{a_f H_f}{a_0 H_0}\right)^2.$$
(3.36)

よって平坦性問題を解決するためには、

$$e^{\mathcal{N}} > \frac{a_f H_f}{a_0 H_0},\tag{3.37}$$

を満たせば良い。

図 3.3: 平坦性問題の解決。急激な加速度膨張によって観測できる領域は平坦になる。

3.2 インフレーション理論

インフレーション理論は1981年に佐藤勝彦、グースがそれぞれ提唱した理論である[19]。 インフレーションとは初期宇宙で起こった加速度膨張の事である。彼らはインフレーショ ンが起こればビックバン理論の問題点が解決される事を発見した。佐藤勝彦はヒッグス粒 子を用いたインフレーション理論を提唱した。しかし、このモデルでは相転移が空間の各 点でバラバラに起こるため空間の各点で相転移による泡が生じ、また空間自体も急激に 引き延ばされるため泡同士の衝突が起こらず、結果として宇宙のエネルギー分布が一様に ならない。このモデルは古いインフレーションモデルと呼ばれ、後にリンデ達により新し いインフレーションモデルが作られた。この理論では我々の宇宙は1つの泡の中の一部に なるため、宇宙は一様になる。インフレーションを起こすインフラトン場と呼ばれるス カラー場 ϕ がポテンシャルをゆっくり転がる事でインフレーションを起こすスローロー ルインフレーションと呼ばれる理論が代表的である。インフレーションモデルは様々なタ イプのモデルが提唱されているが 3.2 節ではスローロールインフレーションモデルを解説 する。

3.2.1 インフレーション理論

インフレーションは宇宙初期に起こった加速度膨張の事である [20, 21, 22, 23, 24, 25]。

$$\ddot{a} > 0. \tag{3.38}$$

インフレーション $\ddot{a} > 0$ が起こるためには、

$$\ddot{a} = -\frac{4\pi G}{3} \left(\rho + 3p\right) a, \tag{3.39}$$

より、 ρ +3p<0であれば良い。この負の圧力はスカラー場 ϕ によって導かれる。その ためインフレーションが起こるためにはスカラー場 ϕ の理論を考えれば良い。スカラー 場 ϕ はインフレーションを起こす場であるため、インフラトンと呼ばれる。4次元時空に おけるスカラー場 ϕ の作用は、

$$S = -\int d^4x \sqrt{-g} \left[\frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + V(\phi) \right].$$
(3.40)

 $V(\phi)$ はポテンシャルである。エネルギー密度 ρ 、圧力pとして、

$$\rho = \frac{1}{2}\dot{\phi} + V(\phi), \qquad (3.41)$$

$$p = \frac{1}{2}\dot{\phi} - V(\phi),$$
 (3.42)

を得る。(3.41)、(3.42) から負の圧力を得るためには $\dot{\phi}^2 < V(\phi)$ であれば良い。特に、 $\dot{\phi}^2 \ll V$ のときエネルギー密度はほぼ定数であり、インフレーションが起こる。 3.2. インフレーション理論

(3.41)、(3.42)、エネルギー保存則(3.9)、フリードマン方程式から、

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0.$$
 (3.43)

(3.8) と(3.41)から *H* は次式の様になる。 $H = \dot{a}/a$ でありハッブル定数である。

$$H = \sqrt{\frac{8\pi G\rho}{3}} = \sqrt{\frac{8\pi G}{3} \left(\frac{1}{2}\dot{\phi}^2 + V(\phi)\right)}.$$
 (3.44)

さらに、(3.43) と(3.44) から、

$$2H\dot{H} = \frac{8\pi G}{3} \left(\dot{\phi}\ddot{\phi} + V'(\phi) \dot{\phi} \right) = -8\pi G H \dot{\phi}, \qquad (3.45)$$

となる。よって、

$$\dot{H} = -4\pi G \dot{\phi}^2, \qquad (3.46)$$

を得る。

インフレーション中は*H*がほぼ一定であるため、 $\dot{H} \ll H^2$ となる。(3.44) と(3.46) より、

$$\phi^2 \ll |V(\phi)|, \qquad (3.47)$$

であれば指数関数的膨張が起こる。よって、(3.41)と(3.42)から、

$$p \simeq -\rho, \tag{3.48}$$

という関係を得る。このとき、宇宙の膨張率Hは

$$H \simeq \sqrt{\frac{8\pi GV\left(\phi\right)}{3}}.\tag{3.49}$$

膨張時間 1/H の間の $\dot{\phi}$ の変化も十分小さいと仮定すると、

$$\left|\ddot{\phi}\right| \ll H \left|\dot{\phi}\right|. \tag{3.50}$$

よって、(3.43)において $\ddot{\phi}$ の項を無視できるため、

$$\dot{\phi} = -\frac{V'(\phi)}{3H},\tag{3.51}$$

を得る。指数関数的な膨張が起こるとき、

$$\frac{\dot{H}}{H^2} \ll 1,\tag{3.52}$$

であるため、膨張時間1/Hの間のHの変化の割合は、

$$\left|\frac{\dot{H}}{H^2}\right| = \frac{1}{16\pi G} \left(\frac{V'\left(\phi\right)}{V\left(\phi\right)}\right)^2 \ll 1,\tag{3.53}$$

となる。よって指数関数的膨張は次の条件を満たせば良い。

$$\left|\frac{V'\left(\phi\right)}{V\left(\phi\right)}\right| \ll \sqrt{16\pi G}.\tag{3.54}$$

(3.51)を時間微分し、

$$\ddot{\phi} = \frac{V''(\phi)V'(\phi)}{9H^2} - \frac{V'(\phi)^3}{48\pi GV^2}.$$
(3.55)

(3.54) より、 $\left| \ddot{\phi} \right|$ が $\left| V'(\phi) \right|$ よりも十分小さいと言う条件は、

$$\left|\frac{V''\left(\phi\right)}{V\left(\phi\right)}\right| \ll 24\pi G,\tag{3.56}$$

という条件になる。(3.54) と (3.56) は、インフラトン ϕ のポテンシャル $V(\phi)$ が十分平 坦であり、インフラトン ϕ がスローロールする為の条件となる。これらの条件を満たす 時に、宇宙は指数関数的に膨張する。この2つの条件はスローロール条件と呼ばれ、次の 様に定義される。

$$\epsilon \ll 1, \quad \epsilon \equiv \frac{1}{2} M_p^2 \left(\frac{V'}{V}\right)^2,$$
(3.57)

$$|\eta(\phi)| \ll 1, \quad \eta \equiv M_p^2 \frac{V''}{V}.$$
 (3.58)

 ϵ, η はスローロールパラメータと呼ばれる。

3.2.2 インフレーションによる揺らぎの生成

インフレーションによって一様で平坦な宇宙が不自然な初期条件なしに実現される事を 示した。しかし、観測される宇宙は銀河や大規模構造などが存在する。全く揺らぎのない 初期宇宙からはこれらの構造が形成されないため、構造形成の種としての小さな揺らぎが 必要となる。インフレーション中につくられた量子揺らぎは加速度膨張によって急激に引 き伸されハッブル地平線を超え、再び地平線内に入る。この揺らぎはハッブル地平線を出 た後に凍結されることで変化せず保存され、再びハッブルスケール内に入り構造形成の種

図 3.4: スローロールインフレーション。インフラトンはポテンシャル $V(\phi)$ をゆっくり 転がり、時刻 t_i でインフレーションが始まり時刻 t_f で終了する。

になる。インフレーション理論では、インフラトン場の揺らぎが宇宙の密度揺らぎの起源 となる。そのため、インフラトン場の量子揺らぎの性質を調べる事が重要となる。

理論的に予言可能なのは、密度揺らぎが宇宙全体としてどのような統計的性質を持つ かという事である。観測と理論からの予言を比較するために用いられるのが2点相関関数 や、そのフーリエ空間における対応物であるパワースペクトルである。

本節では、はじめに曲率揺らぎ ζ が密度揺らぎ $\delta \rho$ によって記述される事を示す。次に パワースペクトル P について解説し、揺らぎがガウス的揺らぎである事を示す。さらに、 インフラトン場の揺らぎ $\delta \phi$ とパワースペクトル P を結びつけ、パワースペクトル P がほ ぼスケール依存性を持たない事を示す。

原始曲率揺らぎ

曲率揺らぎ ζ は一様なエネルギー密度をもつ時間一定の3次元超曲面上で定義される。 この様な計量は次式で表され、 ζ は3次元空間超曲面の曲率を与える。 $\boldsymbol{x} = (x, y, z)$ である。

$$g_{ij} = a^2 \left(t, \boldsymbol{x} \right) \gamma_{ij} \left(\boldsymbol{x} \right). \tag{3.59}$$

ここで、

$$a(\boldsymbol{x},t) = a(t) e^{\zeta(\boldsymbol{x},t)}, \quad \gamma_{ij}(\boldsymbol{x}) = \left(Ie^{h}\right)_{ij}.$$
(3.60)

Iは単位行列、det $\gamma_{ij} = 1$ 、hはトレースレスであり、 h_{ij} はテンソル揺らぎを表す。 $\gamma_{ij} = \delta_{ij}$ という座標を取る事が可能であり、その際 γ_{ij} と h_{ij} は時間に依らないとする。エネルギー

保存則(3.9)は、計量(3.59)のもとで次式の様に書ける。

$$\dot{\rho}(t) = -3\frac{\dot{a}(\boldsymbol{x},t)}{a(\boldsymbol{x},t)} \left[\rho(t) + p(\boldsymbol{x},t)\right]$$
(3.61)

$$= -3\left(\frac{\dot{a}\left(t\right)}{a\left(t\right)} + \dot{\zeta}\left(\boldsymbol{x},t\right)\right)\left(\rho\left(t\right) + p\left(\boldsymbol{x},t\right)\right).$$
(3.62)

ここで、断熱過程で圧力 $P m \rho$ にのみ依存するとすると、

$$p = p\left(\rho\right). \tag{3.63}$$

この時、pは空間依存性を持たず一様となるため、 $\dot{\zeta}$ も空間依存性をもたず一様になる。 断熱揺らぎの場合、曲率揺らぎ ζ は超ハッブルスケールで保存する。また、スケール因子 a(t)を $\dot{\zeta} = 0$ となる様に選ぶ事ができる。その結果、保存則 (3.9) は

$$\dot{\rho}(t) = -3H(t)(\rho(t) + p(t)).$$
(3.64)

(3.60) では曲率揺らぎ ζ を一様なエネルギー密度をもつスライス上で定義した。しかし、 このスライス上では密度揺らぎ $\delta\rho$ を扱う事ができない。そのため、異なるスライスを用 いて密度揺らぎを定義し、密度揺らぎ $\delta\rho$ と曲率揺らぎ ζ を結びつける。時間座標にのみ 影響するゲージ変換を考える。

$$\tilde{t}(t, \boldsymbol{x}) = t + \delta t(t, \boldsymbol{x}).$$
(3.65)

この変換はスライスを変える。次に $f(t, \mathbf{x}) = f(t) + \delta f(t, \mathbf{x})$ を考える。(3.65) の変換の もとで f は不変であるため、

$$f(t) + \delta f(t, \boldsymbol{x}) = f\left(\tilde{t}\right) + \tilde{\delta f}(t, \boldsymbol{x}).$$
(3.66)

よって、

$$\tilde{\delta f}(t, \boldsymbol{x}) - \delta f(t, \boldsymbol{x}) = f(t) - f\left(\tilde{t}\right).$$
(3.67)

右辺は揺らいでいない量の差であり、 $-f\delta t$ と書けるので、揺らぎに対するゲージ変換として次式を得る。

$$\delta f(t, \boldsymbol{x}) - \delta f(t, \boldsymbol{x}) = -f \delta t(t, \boldsymbol{x}). \qquad (3.68)$$

次に、一様な密度のスライスから、 $\tilde{\delta f} = t + \delta t(t, \boldsymbol{x})$ の一般的なスライスに移る。一般的

なスライス上での曲率揺らぎψは次式で与えられる。

$$\psi = \zeta - H\delta t. \tag{3.69}$$

(3.68)から密度揺らぎは、

$$\delta\rho\left(t,\boldsymbol{x}\right) = -\dot{\rho}\delta t\left(t,\boldsymbol{x}\right). \tag{3.70}$$

よって、曲率揺らぎ ψ と密度揺らぎ $\delta\rho$ は、

$$\zeta = \psi - H \frac{\delta \rho}{\dot{\rho}} \tag{3.71}$$

$$= \psi + \frac{1}{3} \frac{\delta \rho}{\rho + p}. \tag{3.72}$$

ここで、 $\psi = 0$ のフラットスライスを取ると、

$$\zeta = H \frac{\delta \rho}{\dot{\rho}} \tag{3.73}$$

$$= \frac{1}{3} \frac{\delta \rho}{\rho + p}.$$
(3.74)

パワースペクトル

CMBの観測から揺らぎの大きさは 10⁻⁵ と非常に小さい。定量的に示すために、密度揺 らぎの 3 次元空間でのパワースペクトルを用いる。相関関数は密度揺らぎから直接定義さ れるが、パワースペクトルは密度揺らぎをフーリエ変換してから定義される。宇宙の中か ら複数の独立した領域を選び出して、それぞれの領域内で計算した物理量を平均化したも のであるアンサンブル平均を考える。

CMB の観測から揺らぎはガウス的である事が示されている。ある時刻 t における揺ら ぎg(x) を考え、g(x)をフーリエ展開する。

$$g(\boldsymbol{x}) = \int \frac{d^3k}{2\pi^3} g(\boldsymbol{k}) e^{i\boldsymbol{k}\cdot\boldsymbol{x}}.$$
(3.75)

ある点において g の確率分布はガウス的である。2 点相関関数は、宇宙が並進不変、一様 等方である事から、

$$\left\langle g_{\boldsymbol{k}} g_{\boldsymbol{k'}} \right\rangle \equiv (2\pi)^3 \,\delta^3 \left(\boldsymbol{k} + \boldsymbol{k'} \right) \mathcal{P} \left(k \right).$$
 (3.76)

揺らぎはガウス的であるので、2 点相関関数以外はゼロである。

$$\langle g_{\boldsymbol{k}} \rangle = 0, \qquad \langle g_{\boldsymbol{k}} g_{\boldsymbol{k}'} g_{\boldsymbol{k}''} \rangle = 0.$$
 (3.77)

ある範囲 dg において g を見つけられる確率分布は P で与えられる。

$$\boldsymbol{P}_{g}\left(g\right) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{g^{2}}{2\sigma^{2}}\right).$$
(3.78)

分散 σ^2 は

$$\sigma^{2}(\boldsymbol{x}) \equiv \left\langle g^{2}(\boldsymbol{x}) \right\rangle = \frac{1}{\left(2\pi\right)^{3}} \int_{0}^{\infty} \boldsymbol{P}_{g} d^{3}k = \int_{0}^{\infty} \mathcal{P}_{g}\left(k\right) \frac{dk}{k}.$$
(3.79)

ここで、gのスペクトル P_gを次式の様に定義した。

$$\mathcal{P}_{g} \equiv \frac{2\pi^{2}}{k^{3}} \boldsymbol{P}_{g}\left(k\right). \tag{3.80}$$

次に、異なる2点間 $x \ge x + y$ での相関関数を求める。

$$\langle g(\boldsymbol{x}) g(\boldsymbol{x} + \boldsymbol{y}) \rangle = \frac{1}{(2\pi)^3} \int d^3k P_g(k) e^{i\boldsymbol{k}\boldsymbol{y}} = \int_0^\infty \mathcal{P}_g(k) \frac{\sin(ky)}{ky} \frac{dk}{k}.$$
 (3.81)

この結果、並進不変性と回転不変性を持っている事がわかる。これはパワースペクトルが 一様である事を示している。

インフラトンによる揺らぎの生成

揺らぎの起源はインフラトンの揺らぎである。インフラトンが空間的に揺らいでいる と、インフレーションが終わる時刻は場所ごとに異なる。ある体積内における平均的な場 の値が宇宙全体の値から $\delta\phi$ だけずれているとする。宇宙全体での平均的な場の時間微分 を $\dot{\phi}$ とすると、ある体積中でのインフラトン場の発展は、平均的な場の発展に比べて、

$$\delta t = \frac{\delta \phi}{\dot{\phi}},\tag{3.82}$$

だけずれた発展をする。インフラトン場が放射などのエネルギーに転化するときは、全ての空間で同じ密度を生じさせるが、この時間のずれの間にも宇宙が膨張するので密度 揺らぎが生まれる。再加熱時に物質優勢宇宙であれば、スケール因子a(t)と密度 ρ には $\rho \propto a^{-3}$ という関係にあるので、時刻のずれにより生じる揺らぎ $\delta \rho / \rho$ は、

$$\frac{\delta\rho}{\rho} = -3\frac{\delta a}{a} = -3H\delta t, \qquad (3.83)$$

となる。インフレーション中は H と φ がゆっくりとしか変化しない。このため、ハッブ ルスケールを超えると揺らぎはほぼスケール不変となる。超ハッブルスケールで揺らぎは 凍結しているため、再びハッブルスケール内に入ってきても揺らぎは保存されている。

図 3.5: インフレーションによる揺らぎの生成。

具体的にインフラトン場φの揺らぎδφを扱うためにスカラー場理論を考える。

$$\ddot{\phi} + 3H\dot{\phi} + \nabla^2\phi + \frac{dV}{d\phi} = 0.$$
(3.84)

ここで、

$$\dot{\phi} = \frac{d\phi}{dt}, \quad \nabla^2 = \sum_i a^{-2} \frac{\partial^2}{\partial x_i^2}.$$
 (3.85)

V はポテンシャルであり、量子効果や他の場との相互作用を含むが、以下の議論では簡単 $のために<math>V'' = m^2$ とする。次に、(3.66)と同様にスカラー場 ϕ を一様な値 $\phi(t)$ と揺らぎ $\delta\phi(t, x)$ について書くと、

$$\phi(t, \boldsymbol{x}) = \phi(t) + \delta\phi(t, \boldsymbol{x}).$$
(3.86)

(3.84)から、揺らぎ $\delta\phi$ についての式を得る。

$$\left(\delta\ddot{\phi}\right) + 3H\left(\delta\dot{\phi}\right) + \nabla^2\delta\phi + m^2\delta\phi = 0.$$
(3.87)

φをフーリエ変換することで、

$$\left(\delta\ddot{\phi}_{\boldsymbol{k}}\right) + 3H\left(\delta\dot{\phi}_{\boldsymbol{k}}\right) + \left(\frac{k}{a}\right)^{2}\delta\phi_{\boldsymbol{k}} + m^{2}\delta\phi_{\boldsymbol{k}} = 0.$$
(3.88)

スローロール条件から、 $V \simeq 3 M_{\rm P}^2 H^2$ かつ $V^{''} = m^2$ であるので、 $m^2 \ll H^2$ となる。よっ

34

第3章 インフレーション理論

て、質量項は無視できるため質量ゼロのスカラー場理論として記述される。

$$\left(\delta\ddot{\phi}_{\boldsymbol{k}}\right) + 3H\left(\delta\dot{\phi}_{\boldsymbol{k}}\right) + \left(\frac{k}{a}\right)^2 \delta\phi_{\boldsymbol{k}} = 0.$$
(3.89)

次に、 ϕ についてのスペクトル \mathcal{P}_{ϕ} を求めるために ϕ を生成、消滅演算子を用いて表す。

$$\delta\phi_k\left(t\right) = \omega_k\left(t\right)a_k + \omega_k^*\left(t\right)a_k^{\dagger}.$$
(3.90)

ここで、 ω_k は(3.89)の解となり、

$$(\ddot{\omega}_k) + 3H(\dot{\omega}_k) + \left(\frac{k}{a}\right)^2 \omega_k = 0.$$
(3.91)

揺らぎはホライズンを超えると凍結されるため、ホライズンを超える時刻 t_* 付近について興味がある。 ω_k はホライズンを超える前は平坦な理論の解となる。その様な ω_k は次式の様に書ける。

$$\omega_k\left(t\right) = L^{-3/2} \frac{H}{\left(2k^3\right)^{1/2}} \left(i + \frac{k}{aH}\right) \exp\left(\frac{ik}{aH}\right).$$
(3.92)

 $\delta \phi$ についての分散は、

$$\left\langle \left| \delta \phi_{\boldsymbol{k}} \right|^2 \right\rangle = \left| \omega_k \right|^2.$$
 (3.93)

ホライズンを出た後の時刻 t* では、

$$\left\langle \left| \delta \phi_{\boldsymbol{k}} \right|^2 \right\rangle = \frac{H^2\left(t_* \right)}{2L^3 k^3},\tag{3.94}$$

となる。よって、スペクトル \mathcal{P}_{ϕ} は、

$$\mathcal{P}_{\phi} = \mathcal{V} \frac{k^3}{2\pi^2} \left| \omega_k \right|^2, \qquad (3.95)$$

であるので、

$$\mathcal{P}_{\phi}\left(\boldsymbol{k},t\right) = \left(\frac{H\left(t_{*}\right)}{2\pi}\right)^{2}.$$
(3.96)

スローロールインフレーションを考えているので、数ハッブル時間の間は H は変化しない。よって、ハッブルスケールを超えたときの時刻 k = aH で評価すれば良ので、

$$\mathcal{P}_{\phi}\left(\boldsymbol{k},t\right) = \left.\left(\frac{H}{2\pi}\right)^{2}\right|_{\boldsymbol{k}=aH}.$$
(3.97)
3.2. インフレーション理論

次に、インフラトンφの揺らぎから曲率揺らぎくを導く。

$$\delta t = -\frac{\delta \rho}{\dot{\rho}} = -\frac{\delta \phi}{\dot{\phi}},\tag{3.98}$$

であるので、

$$\zeta = -H \frac{\delta \rho_{\phi}}{\dot{\rho}_{\phi}} = -H \frac{\delta \phi}{\dot{\phi}},\tag{3.99}$$

を得る。ここで、(3.49)、(3.51)より、

$$\zeta\left(\boldsymbol{x}\right) = \frac{1}{M_P^2} \frac{V}{V'} \delta\phi\left(\boldsymbol{x}\right). \tag{3.100}$$

ホライズンサイズを超えた時の(のスペクトルを評価すると、

$$\mathcal{P}_{\zeta}\left(k\right) = \frac{1}{24\pi^{2}M_{P}^{2}} \left.\frac{V}{\epsilon}\right|_{k=aH}.$$
(3.101)

曲率揺らぎ ζ のスペクトル \mathcal{P}_{ζ} はスケール不変である。スペクトル \mathcal{P}_{ζ} のスケール依存性 は次式で定義されるスペクトルインデックス n_s によって表される。

$$n_s - 1 = -6\epsilon + 2\eta, \tag{3.102}$$

である。スペクトルインデックス n_s の値はスローロールパラメータ ϵ 、 η によって記述され、インフレーション模型に制限を与える。CMBの観測から

$$n_s - 1 \equiv \frac{d \ln \mathcal{P}_{\zeta}(k)}{d \ln k}.$$
(3.103)

 $\mathcal{P}_{\zeta}(k)$ は銀河の分布や CMB から決まり、

$$\mathcal{P}_{\zeta}(k_0) = (4.9 \pm 0.2) \times 10^{-5},$$
 (3.104)

$$n_s = 0.96 \pm 0.03. \tag{3.105}$$

である。 $k_0 = 0.002 \text{Mpc}^{-1}$ であり、現在の宇宙の地平線スケールに対応する波数である。

35

第4章 5次元重力理論によるradion inflation模型

本章では、高次元重力理論の量子効果から生じる有効ポテンシャルを用いた radion inflation 模型 [37] の研究結果について議論する。インフレーションが起こるポテンシャル はスローロール条件を満たさなければならないため、非常に滑らかな形をしていなけれ ばならない。多くのインフレーション模型はインフレーションを起こす事に適したポテン シャルを手で与えることでインフレーションを起こす。しかし、初期宇宙は非常に高エネ ルギーであるため、インフレーション模型は素粒子理論から導かれる事が自然である。素 粒子理論では、ポテンシャルの形は量子効果によって複雑になる事が知られている。この ようなポテンシャルを用いてインフレーションを起こすためには、理論のパラメータを微 調整しなければならない。さらに、インフレーションを引き起こすためにはスカラー場が 必要である事を前章で示したが、多くのインフレーション模型ではこのインフラトンの理 論的な起源については触れていない。

高次元ゲージ理論では、4次元に次元還元した理論の視点ではゲージ場の一部にスカ ラー場が含まれていることから、このスカラー場をインフラトンと同一視する事でイン フレーションを起こせる事が示されている。しかし、高次元理論ではコンパクト化された 空間がなぜプランクスケール程度まで小さくなり、安定化されているのかが重要な問題で あった。この理論では、3次元空間がインフレーションによって拡大する事と5次元目の 空間がコンパクト化される過程はそれぞれ独立であると考えられている。そのため、これ までの高次元理論によるインフレーション模型はコンパクト化された5次元目の空間は、 プランクスケール程度の大きさに安定化されていると仮定しなければならなかった。

5次元重力理論には計量 g_{MN} 、 $M = 0, 1, \dots 5$ の 55 成分 g_{55} に 4 次元に次元還元した理 論の視点でのスカラー場 ϕ が含まれている。2 章では radion と呼ばれるスカラー場 ϕ が コンパクト化の半径が縮まる機構において重要な役割を果たす事を示した。

本研究では5次元計量 g_{MN} から現れるスカラー場 ϕ 、radion をインフラトンと見なし、 インフレーションを引き起こす事のできるパラメータが非常に広範囲に渡る事を示す [37]。 これまで、自発的コンパクト化の機構は radion ϕ のポテンシャル $V(\phi)$ によってコンパ クト化された余剰空間が小さくなる事に焦点が当てられていた。Radion inflation 模型で は自発的コンパクト化の過程にインフレーションが引き起こされる。そのため、5次元目 の空間がコンパクト化される過程で3次元空間が加速度膨張する。さらに、現在の宇宙を 第4章 5次元重力理論による radion inflation 模型

再現できる事を示した。本模型では高次元理論から現在の宇宙を再現するには自発的コン パクト化の機構によってインフレーションが自然に引き起こされる。

4.1 インフレーションの条件

インフレーション模型をつくる時に満たすべき条件を以下に纏める。これらの条件は観 測からの制限であり、現在の宇宙を再現するためには以下の全てを満たさなくてはならな い [29]。

i) スローロール条件

インフレーションが起こるためにはポテンシャルが十分平坦である必要があり、 以下のスローロール条件を満たさなければならない。

$$\epsilon \equiv \frac{1}{2} M_P^2 \left(\frac{V'}{V}\right)^2 \ll 1 , \quad \eta \equiv M_P^2 \frac{V''}{V} \ll 1, \tag{4.1}$$

 $M_P = 2.44 \times 10^{18} \text{GeV}$ は既約プランク質量であり、 $V' = dV/d\phi$ である。

ii) スペクトル指数 *n*_s

$$n_s \equiv 1 - 6\epsilon + 2\eta$$
, $0.948 < n_s < 0.977.$ (4.2)

iii) e-folding 数 \mathcal{N}

$$\mathcal{N} \equiv \frac{1}{M_P^2} \left| \int_{\phi_i}^{\phi_e} \left(\frac{V}{V'} \right) d\phi \right| = 50 - 60, \tag{4.3}$$

 ϕ_i はインフレーションが始まる時の ϕ の値、 ϕ_e はインフレーション終了時の値である。ホライズン問題の解決のためにはインフレーションが十分長く続く必要があり、N は 50 – 60 でなければならない.

iv) 曲率揺らぎ

$$\delta_H \equiv \frac{1}{5\sqrt{6}\pi} \frac{V^{1/2}}{M_P^2 \epsilon^{1/2}} = 1.91 \times 10^{-5}.$$
(4.4)

v) テンソル-スカラー比rは次の上限を満たさなければならない。

$$r = 16\epsilon \le 0.24. \tag{4.5}$$

vi) 観測から現在の宇宙項は非常に小さい正の値である事が示されている。そのため、 $V_{\min} \simeq 0 \ {\it b} \ {\it v}_{\rm o}$

¹宇宙項は非常に小さい正の値であり、素粒子理論から示唆される理論値と観測値には100桁以上の差が 生じる。これは宇宙項問題と呼ばれ、素粒子物理における重大な問題である。

4.2 Radion inflation I

5次元目の空間が S^1 コンパクト化された $M_4 \times S^1$ 時空における、重力+フェルミオン ψ の理論を考える。5次元時空での作用及び5次元時空計量は次式の様になる。

$$S = \int d^{5}x \sqrt{-g} \frac{1}{16\pi G_{5}} \left[{}^{5}R + \bar{\psi}_{i} \left(i\gamma^{A} D_{A} - \mu \right) \psi_{i} - a \right], \tag{4.6}$$

$$g_{MN} = \phi^{-1/3} \begin{pmatrix} g_{\mu\nu} + A_{\mu}A_{\nu} & A_{\mu}\phi \\ A_{\nu}\phi & \phi \end{pmatrix}, \qquad (4.7)$$

 $M = 0, \dots, 3,5$ であり5次元時空の添字であり、 $\mu = 0, \dots, 3$ は4次元時空の添字である。平坦な時空は $g_{MN} = \eta_{MN} = \text{diag}(-1, +1, +1, +1)$ 、 ${}^{5}R$ は5次元リッチスカラー、 $G_5 \equiv G_4 L_5$ は5次元重力定数、aは5次元宇宙項、 μ はフェルミオンの質量、 $i = 1, \dots, c$ でありフェルミオンの個数を示す。Radion ϕ をインフラトンと同一視する事で、インフラトンポテンシャル $V(\phi)$ によってインフレーションが引き起こされる事を示す。 $V(\phi)$ は次式の様に求まる。

$$V(\phi) = V_{\text{gra}}(\phi) + V_{\text{fer}}(\phi, \mu)$$

$$= -\frac{3\zeta(5)}{64\pi^2} \frac{1}{L^4 \phi^2} + c \frac{3}{64\pi^2} \frac{1}{L^4 \phi^2} \left[Li_5 \left(e^{-2L\mu\phi^{1/3}} \right) + 2L\mu\phi^{1/3} Li_4 \left(e^{-2L\mu\phi^{1/3}} \right) \right]$$

$$+ \frac{4}{3} L^2 \mu^2 \phi^{2/3} Li_3 \left(e^{-2L\mu\phi^{1/3}} \right) + aL\phi^{-1/3} + b.$$

$$(4.9)$$

(4.9) におけるbは5次元重力理論の作用(4.6) には含まれない項であるが、4次元宇宙項 としてポテンシャル $V(\phi)$ に加えた。4次元宇宙項bを含まない模型は4.3節で述べる。

 $V(\phi)$ は $\phi = \phi_c$ で最小値 $V'(\phi = \phi_c; L, \mu, a, b) \equiv 0$ とする。さらに、観測から $V(\phi = \phi_c; L, \mu, a, b) = 0$ を要求する。次に、 ϕ_c からの揺らぎを ϕ_f とし、

$$\phi = \phi_c + \frac{\phi_f}{\sqrt{3}M_P},\tag{4.10}$$

とする。 S^1 コンパクト化された5次元目の空間の半径をRとした時 $L = 2\pi R$ であり、物理的な大きさは $L_{phys} = \phi_c^{1/3}L$ となる。ここで、 ϕ_c は無次元、 ϕ_f は質量次元1である。 我々の模型はプランクスケール以下での低エネルギー有効理論であるとする。図4.2から、 radion inflation 模型はプランクスケール程度の大きさで5次元目の空間が安定となる事が わかる。そのため、この模型は低エネルギー有効理論として矛盾する事はない。この模型 では、5次元目の空間がプランクスケール程度に縮む過程で3次元空間がインフレーショ ンによって拡大する。

インフレーションを引き起こすためにはパラメータを適切な値に選ばなければならい。 しかし、インフレーションを起こし観測を再現する事のできるパラメータ(*L*, μ, *c*)の領域 は非常に広範囲に渡る。可能な μ の範囲としては16桁に渡る広い範囲でインフレーション が可能である。*L* については10⁻¹⁷GeV⁻¹程度で、相対的に30%程度の許容範囲がある。 フェルミオンの個数*c*は5次元目の空間のコンパクト化の半径を安定化するために*c* ≥ 2 でなければならい。数値解析する時は、まず*c* = 2のときインフレーションが起こせる事 を示し、*c*の値を変えてもインフレーションを起こす事が可能である事を示す。*c* = 2 と したとき、インフラトンポテンシャル*V* = *V*(ϕ_f ; ϕ_c , *L*, μ , *a*, *b*)は5つのパラメータに依 存するため、数値解析の結果は複雑になる。本研究では、解析するにあたり、特に ϕ_c = 1 について詳細に議論した。そのため、 ϕ_c = 1で安定な真空を得るとする。

 $V(\phi)$ の最小値を0とするために2つのパラメータ a と bに次の条件を課す。

$$V(\phi_f; \phi_c = 1, L, \mu, a, b) = 0, \quad V'(\phi_f; \phi_c = 1, L, \mu, a, b) = 0.$$
(4.11)

1つ目の条件は現在の宇宙項が0である事に対応し、真空エネルギーが0である事を要求 する。2つ目の条件によって $\phi_c = 1 \text{ cv}(\phi)$ が最小値となる事を要求する。(4.11)を課す 事で、a, bはLと μ の関数となる。

$$a = a(L, \mu), \quad b = b(L, \mu).$$
 (4.12)

この結果、インフラトンポテンシャルは $V(\phi_f; L, \mu)$ となるため、インフレーションを起こすために必要な条件 i) – v)を満たす様に *L* と μ の値を決めれば良い。

*L*はプランクスケール程度のオーダーであると予想されるため、 $1/M_P$ (= 4.18×10⁻¹⁹GeV⁻¹) と選ぶ。フェルミオン ψ_i の数 c は任意であるが、コンパクト化の半径を安定化させるた めに必要な最小値 c = 2 とし、次にフェルミオンの数が大きいときの一例として、 c = 51 とし、解析する。

I) $c = 2 \ge L \ge \mu$ についてパラメータの範囲を求める。 $L \bowtie O(1) \times 10^{-17} \text{GeV}^{-1}$ 、 μ は 0.8GeV – $O(1) \times 10^{16} \text{GeV}$ となり、図 4.1 のように非常に広範囲から選ぶ事ができる。 具体的に図 4.1 での白点におけるパラメータの値は、

$$L = 3.51 \times 10^{-17} \text{GeV}^{-1}, \ \mu = 1 \times 10^{15} \text{GeV},$$
 (4.13)

であり、この時のインフラトンポテンシャルは図 4.2 のようになる。図 4.2 の $\phi_e \leq \phi \leq \phi_i$ の影の部分がインフレーションが起こる範囲であり、 $\phi_i = 1.60 \times 10^{19} \text{GeV}$ でインフレー ションが始まり、 $\phi_e = 1.76 \times 10^{18} \text{GeV}$ で終了する。インフラトン質量は L に依り、 $m_{\phi}^2 \simeq 1/(M_P^2 L^4)$ となる。(4.13)のとき、 $m_{\phi} = 1.28 \times 10^{14} \text{GeV}$ となる。テンソル-スカ ラー比は $r = 1.2 \times 10^{-3}$ となり、観測と矛盾しない。

II) フェルミオンの数cが大きい時のインフレーションを起こす事のできる $L \ge \mu$ の値の一例を示す。c = 51としたとき、 $L \ge \mu$ はc = 2のときと然程大きく変わらない値、例

取り得る範囲である。 $L = (2.53 - 3.62) \times 1 \times 10^{15} \text{GeV}$ におけるインフラトンポテン 10^{-17}GeV^{-1} , $\mu = 0.8 \text{GeV} - 4.15 \times 10^{16} \text{GeV}$ $\checkmark \forall \nu_{\circ}$

図 4.1: 影の付いている部分がパラメータの 図 4.2: $L = 3.51 \times 10^{-17} \text{GeV}^{-1}, \mu =$

えば、

$$L = 1 \times 10^{-16} \text{GeV}^{-1}, \ \mu = 1 \times 10^{15} \text{GeV},$$
 (4.14)

においてインフレーションを起こす事ができる。

Radion inflation II 4.3

4.2節では、5次元重力理論に含まれるれるスカラー場 ϕ から得られるポテンシャル $V(\phi)$ を用いてインフレーションが起こせる事を示した。その結果、少ないパラメータで観測を 良く再現する事が可能であり、パラメータ領域は広範囲に渡る事を示した。4.2節で用い たインフラトンポテンシャル (4.9) には、5 次元宇宙項からの寄与 $aL\phi^{-1/3}$ と 4 次元宇宙 項bが含まれている。一方、5次元重力理論における作用は、

$$S = \int d^5 x \sqrt{-g} \frac{1}{16\pi G_5} \left[{}^5 R - a \right], \qquad (4.15)$$

である。aは5次元宇宙項であり、(4.9)で4次元宇宙項として導入したbは含まれていな い。前述の様に、インフレーション模型を作る際には2つの方法がある。i) インフレーショ ンに適したポテンシャルを手で与える。ii) インフレーションが起こるポテンシャルを理 論から導く。我々は5次元重力理論から導かれるポテンシャルがインフレーションに適し ている事を示したが、4次元宇宙項bは5次元重力理論の作用に含まれていなかった。本 節では、4次元宇宙項bを含まずともインフレーションが起こり、観測を再現できる事を 示す。

Radion ϕ のポテンシャル $V(\phi)$ が安定な真空をもつために 4.2 節と同様、質量を持った

フェルミオンを入れる。

$$S_{5} = \int d^{5}x \sqrt{-g} \frac{1}{16\pi G_{5}} \left[{}^{5}R + \bar{\psi}_{i} \left(i\gamma^{A} D_{A} - \mu \right) \psi_{i} - a \right], \qquad (4.16)$$

5次元計量 g_{MN} は (4.7) と同様にとる。インフラトンポテンシャル $V(\phi)$ は、

$$V(\phi) = V_{\text{grav}}(\phi) + V_{\text{fer}}(\phi)$$

= $-\frac{15\zeta(5)}{4\pi^2} \frac{1}{L^4 \phi^2}$
+ $c \frac{3}{\pi^2} \frac{1}{L^4 \phi^2} \left[Li_5 \left(e^{-L\phi^{1/3}\mu} \right) + L\mu Li_4 \left(e^{-L\phi^{1/3}\mu} \right) + \frac{1}{3} L^2 \mu^2 Li_3 \left(e^{-L\phi^{1/3}\mu} \right) \right]$
+ $aL\phi^{-1/3}$. (4.17)

(4.17) における最後の項は 5 次元宇宙項からの寄与である。(4.15) に含まれている 5 次 元宇宙項 *a* は、4 次元へ次元還元する事により *aL* $\phi^{-1/3}$ となり、radion ϕ に依存する。 ϕ 依存する宇宙項の寄与より、ポテンシャル *V*(ϕ) は図 4.3 のように振舞う。 ϕ_1 を境として、 radion ϕ の初期値 ϕ_i が $\phi_i < \phi_1$ であれば 5 次元目の空間は縮み、 $\phi_i > \phi_1$ であれば 5 次 元目の空間のサイズは大きくなる。インフレーションが起こり、観測を再現するためには $\phi_i < \phi_1$ でなければならない。また、現在観測されている宇宙はほぼ平坦である。そのた

図 4.3: インフラトンの初期値 ϕ_i が、 $\phi_i < \phi_1$ であれば 5 次元目の空間サイズは縮まり、安定な真空を得る。一方、 $\phi_i > \phi_1$ であれば 5 次元目は大きくなる。 $L = 4.5 \times 10^{-17} \text{GeV}^{-1}$ 、 $\mu = 4.95 \times 10^{16} \text{GeV}$ のとき、 $\phi_1 = 2.08 \times 10^{19} \text{GeV}$ である。

め、インフラトンポテンシャルの最小値 $V_{\min}(\phi)$ は $V_{\min}(\phi) = 0$ で安定にならなければならいない。 $V_{\min}(\phi) = 0$ 、 $V'_{\min}(\phi) = 0$ を得るためには宇宙項 aを加えなければならない。

次に、4.1 節で述べたインフレーションの条件、i)-v) を満たす $L \ge \mu$ の値を求める。インフラトンポテンシャル $V = V(\phi_f; \phi_c, L, \mu, a)$ は4つのパラメータに依存する。4.2 節で行なった解析よりもパラメータの数は少なくなっており、インフレーションを起こすためのパラメータ領域への制限が強くなる。前節で行なった解析と同様に、 $a \ge L \ge \mu$ に次

42

4.3. Radion inflation II

の条件を課す。

$$V(\phi_f; \phi_c = 1, L, \mu, a) = 0, \quad V'(\phi_f; \phi_c = 1, L, \mu, a) = 0.$$
(4.18)

(4.18)を課す事で、 $a \ge \mu$ はLの関数となる。 $\mu \ge L$ の関係を図 4.4 に示す。この結果、インフラトンポテンシャルは $V(\phi_f; L, \mu)$ となるため、インフレーションを起こすために必要な条件 i) – v)を満たす様に $L \ge \mu$ の値を決めれば良い。前節と同様、I)フェルミオンの個数c = 2としたとき、II)フェルミオンの数が大きいときの例としてc = 51としたときについて解析する。

I) $c = 2 \ge L \ge \mu$ についてパラメータの範囲を求める。インフレーションが起こる 領域は、

$$L = 4.42 \times 10^{-17} - 4.84 \times 10^{-17} \text{GeV}^{-1}, \mu = 4.61 \times 10^{16} - 5.04 \times 10^{16} \text{GeV}, \quad (4.19)$$

となる。テンソル-スカラー比rは、

$$r = 4.84 \times 10^{-3} - 6.67 \times 10^{-3}. \tag{4.20}$$

となり、観測を良く再現できる。インフラトンポテンシャルの一例として、 $L = 4.5 \times 10^{-17} \text{GeV}^{-1}$ 、 $\mu = 4.95 \times 10^{16} \text{GeV}$ のときの $V(\phi)$ を図 4.5 に示す。図 4.5 の $\phi_e \leq \phi \leq \phi_i$ の影の部分がインフレーションが起こる範囲であり、 $\phi_i = 1.4 \times 10^{19} \text{GeV}$ でインフレーションが始まり、 $\phi_e = 2.09 \times 10^{18} \text{GeV}$ で終了する。

II) c = 51 とし L と μ についてパラメータの範囲を求める。インフレーションが起こる領域は、

$$L = 8.06 \times 10^{-17} - 9.09 \times 10^{-17} \text{GeV}^{-1}, \mu = 8.65 \times 10^{16} - 9.75 \times 10^{16} \text{GeV}, \quad (4.21)$$

となる。テンソル-スカラー比rは、

$$r = 1.42 \times 10^{-3} - 2.21 \times 10^{-3}. \tag{4.22}$$

4.2 節で述べたインフレーション模型と比較した時、パラメータが1つ少ないため、インフレーションが起こる $L \ge \mu$ の領域は狭まる。しかし、パラメータ L、 μ は (4.20)の領域から選ぶ事が可能であり、L、 μ ともに 10 %程度の許容範囲がある。

4.2節ではインフレーションを起こすために用いたポテンシャルに理論的に由来が不明 瞭である項bが含まれていた。しかし、4次元宇宙項bを入れずともインフレーションを 起こす事が可能であり、インフラトンポテンシャルは理論から求める事ができる。また、 4.2節と同様、コンパクト化の半径はプランクスケール程度に安定化される。

ここまで述べたように、 $M_4 \times S^1$ での5次元重力理論における radionの1 ループ有効

図 4.4: パラメータ領域は、c = 2、L = 図 4.5: $L = 4.5 \times 10^{-17} \text{GeV}^{-1}$ 、 $\mu = 4.95 \times 4.42 \times 10^{-17} - 4.84 \times 10^{-17} \text{GeV}^{-1}$ 、 $\mu = 10^{16} \text{GeV} \mathcal{O}$ とき、 $\phi_i = 1.4 \times 10^{19} \text{GeV}$ 、 $\phi_e = 4.61 \times 10^{16} - 5.04 \times 10^{16} \text{GeV}$ である。 2.09 × 10¹⁸ GeV である。

ポテンシャルによってインフレーションが実現される事を示した。さらに、パラメータの 許容範囲は広範囲に渡る。インフレーションと自発的コンパクト化という過程はそれぞれ 独立に実現されるのだと考えられてきた。そのため、これらの実現のためには異なる2つ のスカラー場が必要だとされてきた。我々は5次元重力理論の計量 g_{MN} の55成分に含ま れるスカラー場 ϕ 、radionをインフラトンと同一視することでインフラトンの起源が高次 元重力理論の計量 g_{MN} であるとした。その結果、5次元目の空間の自発的コンパクトと 3次元空間のインフレーションによる加速度膨張が1つのスカラー場によって同時に起こ る事がわかった。また、5次元重力理論から現在観測されている宇宙を再現するためには インフレーションが必要であり、そのためには5次元目の空間はプランクスケール程度に コンパクト化されなければならない事を示した。

第5章 時空の4次元性

2章では高次元重力理論の量子効果によって余剰空間次元がプランクスケール程度まで 縮み、余剰空間次元は観測されない程小さく留まり、4次元時空のみ観測される事を解説 した。4章では5次元目の空間が縮まる過程でインフレーションが起こり、観測される宇 宙を再現できる事を示せた。しかし、どちらの議論も余剰空間次元のみコンパクト化さ れている事を前提としている。つまり、4次元時空と余剰空間次元を区別し、*M*₄×*S*¹ と なっている事を仮定している。なぜ3次元空間のみが特別大きいのかについては言及され ていない。

5.1節では3次元空間が小さくなり5次元目の空間が大きくなる解として5次元カスナー 計量がある事を示し、5.2節ではブランデンバーガーとヴァッファが弦理論を用いて4次 元時空のみ大きくなり、時空の4次元性が説明される可能性についての示唆を解説する。

我々は、場の理論を用いて時空の4次元性を示せる可能性について研究した。

5.3節では全ての空間次元がコンパクト化された状態から、空間3次元のみ大きく、余 剰空間次元が3次元空間に比べて十分小さい状態で安定になる真空がある事を示し、時空 の4次元性が実現される可能性について議論する。

5.1 高次元カスナー計量

高次元理論による発展とともに、高次元理論を用いた宇宙論への応用も考えられてき た。このとき問題になるのは、現在観測される空間が3次元であるという事である。その ため、3次元空間は大きく、それ以外は小さくならなければない。宇宙進化の過程でこの ような非等方性を実現させる試みは動的次元縮小 (dynamical dimensional reduction) と 呼ばれる。4次元性示すためには、3次元空間のみ拡がり、余剰空間は縮まる様な解がア インシュタイン重力理論に存在する事を示せば良い。4次元アインシュタイン重力理論に おいて、空間が非一様な振舞をする模型は、カスナーによって1921年に提唱されたカス ナー計量が知られる [36]。この模型は次の様になる。

$$ds^{2} = -dt^{2} + t^{2p_{1}}dx_{1}^{2} + t^{2p_{2}}dx_{2}^{2} + t^{2p_{3}}dx_{3}^{2}.$$
(5.1)

第5章 時空の4次元性

*p_i*は次の条件を満たす定数である。

$$p_1 + p_2 + p_3 = (p_1)^2 + (p_3)^2 + (p_3)^2 = 1.$$
 (5.2)

また、体積要素は一定に増大し、

$$\sqrt{-g} = t. \tag{5.3}$$

これは時間とともに宇宙が膨張する模型となる。この計量の特徴は各空間成分が異なる膨 張の仕方をする事であり、いずれか1つの空間は時間と共に縮む事である。式 (5.2) から、 ある1つのpは負になる。

$$-\frac{1}{3} \le p_1 \le 0. \tag{5.4}$$

つまり、3次元空間のうち2つは拡大し、1つは小さくなるのである。チョドスらはこの模型を5次元時空へと拡張し、4つの空間のうち3つの空間のサイズは時間と共に拡がり、残り1つの空間のサイズは非常に小さくなる事を示した[34]。彼らは、全ての空間次元が同じ大きさに丸められている状態から、時間変化によって空間の大きさに非一様性が生じる事を示した。このとき、観測と一致するように3次元空間は大きくなり、余剰空間は小さくなるためには、以下のように1-3次元空間と余剰空間を区別し、3次元空間のスケール因子をb(t)とすると計量は次のようになる。 $i = 1, \dots, 3$ は3次元空間を表し、yは5次元目の空間を表す。

$$ds^2 = -dt^2 + a^2 dx_i^2 + b^2 dx_u^2. ag{5.5}$$

今、d = 5とし、ある時刻 t_0 では全ての空間が一様であり、その後は3次元空間が一様になるように要請すると、 $a \propto t^{1/2}$ 、 $b \propto t^{-1/2}$ となる。

$$p_1 = p_2 = p_3 = \frac{1}{2}, \quad p_5 = -\frac{1}{2},$$
 (5.6)

となり、この時、

$$ds^{2} = -dt^{2} + \left(\frac{t_{0}}{t}\right) \left[(dx_{1})^{2} + (dx_{2})^{2} + (dx_{3})^{2} \right] + \left(\frac{t}{t_{0}}\right) (dx_{5})^{2}.$$
(5.7)

この計量では空間のサイズは時間に依った振舞をする。つまり宇宙の発展の過程で時空の 4次元性が実現されることになる。 $t = t_0$ では全ての空間が等方であり、 $t \gg t_0$ では観測 される空間は1次元のみとなり、 $t \ll t_0$ では、3次元空間が拡がり5次元目は十分小さく なる事がわかる。 t_0 以降では空間3次元が時間とともに拡大し、5次元目の空間は小さく

5.2. Brandenberger-Vafa 機構

なる。より一般的に、カスナー計量を d 次元時空の解とした時、計量は次式の様になる。

$$ds^{2} = -dt^{2} + \sum_{i=1}^{d} \left(\frac{t}{t_{0}}\right)^{p_{i}} \left(dx_{i}\right)^{2},$$
(5.8)

$$\sum_{i=1}^{d} p_i = \sum_{i=1}^{d} p_i^2 = 1.$$
(5.9)

このとき、3次元空間のみ拡がるために3つの $p \ge p_1$ とし、余剰空間は p_2 とすると、それぞれ以下の様になる。

$$p_1 = \frac{3 + (3n^2 + 6n)^{1/2}}{3(n+3)}, \qquad (5.10)$$

$$p_2 = \frac{n - (3n^2 + 6n)^{1/2}}{n(n+3)}.$$
(5.11)

nが十分大きいとき、

$$p_1 \simeq 1/\sqrt{3},\tag{5.12}$$

となり、 観測されるハッブル定数 H は

$$H \simeq 1/\sqrt{3}t,\tag{5.13}$$

となる。この模型は3次元のみ拡がり、余剰空間は縮むため時空の4次元性を再現できる 可能性がある。しかし、このように各空間が非等方的に振舞う模型は、宇宙初期にインフ レーションが起これば全ての空間が指数関数的に膨張するため、余剰空間も巨視的になっ てしまうと考えられる。

5.2 Brandenberger-Vafa 機構

弦理論では時空は10次元として記述される。6次元は非常に小さくコンパクト化され ており、4次元は非常に大きく拡がっている。どのような機構で3次元空間のみ非常に大 きくなっているかは素粒子物理における長年の懸案である。ブランデンバーガーとヴァッ ファはこの機構の候補を提唱した。これをブランデンバーガー-ヴァッファ機構 (BV 機構) と呼ぶ [31]。熱平衡状態を保った、9次元の箱を考える。この箱はワインディングモード がある状態では熱平衡を保ったまま拡がる事はできないとする。この時、ワンディング モードは負の圧力の寄与をする。直感的にはワインディングモードは空間が拡大するのを 防ぐ役割を果たす。言い換えれば、ワインディングモードがある状態で空間が拡大するに はたくさんのエネルギーが必要となる。熱平衡状態を保ちながら箱の体積が増大するため には、ワインディングモードが大量に消滅しなければならない。熱平衡状態を保ちながら 箱の体積 (コンパクト化された空間の半径)が大きくなり続けるためには、箱が大きくな ればなるほど、ワインディングモードは消えなければならない。ワインディングモードが たくさん残っている状態だと、膨張はワインディングモードによって抑えられ拡がりは止 まる。

ワインディングモードの消滅はワインディングモード ω と、反対方向に巻き付くワイ ンディングモード ω とが衝突する事で起こる。

$$\omega + \bar{\omega} \leftrightarrow \text{unwound state}$$
 (5.14)

ワインディングモードが動くと、プランクスケール程度の2次元世界面ができる。2つの ワインディングモードが相互作用すると言う事は、2つの2次元世界面が相互作用すると 言う事である。このプロセスが起こるためにはお互いプランクスケール程度にいなけれ ばならない。もしも9次元空間が大きくなるとお互い見つける事ができずに世界面同士は 相互作用できない。つまり、9次元の箱の中でお互い見つける事ができずに、対消滅でき なくなり平衡を保てない。その結果、平衡状態が保てなくなり、拡がるのがとまる。つま り、2+2<1+9なので、9次元空間の中を動く2次元世界面同士は相互作用する事がで きなくなる。この議論から、熱平衡を保ったまま大きくなる時空は最大で4だとわかる。 つまり、弦がお互いを見つけられる次元、2+2=1+3だからである。よって、4次元時 空ではワインディングモードはなくなり、観測される3次元空間が拡がるのである。そし て、プランクスケール程度であった箱は6次元空間が小さいまま留まり、3次元空間は拡 大し観測される4次元時空になるのである。

BV 機構は時空の4次元性を説明する事ができる可能性がある。BV 機構のように、弦 理論を用いた議論は従来からされていたが¹、場の理論を用いた議論はされていなかった。 高次元理論は弦理論のみならず、場の理論でも重要な役割を果たす可能性がある。その ため、我々は時空の4次元性は場の理論から導く事はできないのかと考えた。次節では、 我々が示した研究結果として、高次元重力理論から時空の4次元性が導ける可能性につい て論ずる。

5.3 高次元重力理論の量子効果と時空の4次元性

我々は、場の理論を用いて時空の4次元性を説明できるか研究した。場の理論を用いて BV 機構のように全ての空間次元がコンパクト化された状態から3次元空間のみ拡がり、 余剰次元は小さく留まる事で4次元性を導けないか議論する。

¹BV 機構とは異なるアプローチとして、弦理論の構成的定義として提案されている IKKT 行列模型 [33] でも 4 次元性の説明が試みられている。

全ての空間次元、*n* 次元空間が*Tⁿ* コンパクト化された $M_1 \times T^n$ 上での1 + n 次元重 カ+フェルミオン ψ を考える。1 + n 次元空間での座標は $x^{\mu} = (t, x^{\alpha}), \mu = 0, \dots, n,$ $\alpha = 1, \dots, n$ であり、 α は*n* 次元空間の添字になる。1 + n 次元重力+フェルミオン理論の 作用は次式で与えられる。

$$S = \int d^{n+1}x \sqrt{-g} \left[\kappa^{-2} R^{n+1} + \bar{\psi}_i \left(i\gamma^{\mu} D_{\mu} - \mu \right) \psi_i \right], \qquad (5.15)$$

$$g_{\mu\nu} = \begin{pmatrix} -\Phi & 0\\ 0 & \phi_{\alpha}^2 \delta_{\alpha_{\beta}} \end{pmatrix}, \quad \Phi = \left(\prod_{\alpha=1}^n \phi_{\alpha}\right)^2, \quad d = 1 + n.$$
(5.16)

 $\kappa = 16\pi G_{n+1}, R^{n+1} \text{ は } 1 + n$ 次元スカラー曲率、 $i = 1, \dots, c$ であり、フェルミオンの 個数を表す。1 + n次元の計量には n 個のスカラー場 $\phi_{\alpha}, \alpha = 1, \dots, n$ が含まれており、 各空間次元に対応した radion となる。コンパクト化された各空間次元の物理的な円周は $L_{\alpha} = 2\pi R_{\alpha}\phi_{\alpha}$ であり、 ϕ_{α} の真空期待値で決まる。 R_{α} は α 空間目のコンパクト化された 空間の半径であり、 μ と同様にフリーパラメータである。c 個の 1 + n次元フェルミオン ψ は同じ質量 μ をもつ。フェルミオンの個数 c も任意であるが 1 つのみでは重力からの $V(\phi_{\alpha})$ への寄与の方が大きいので、フェルミオンは 2 つ以上入れる必要がある [9]。 $g_{\mu\nu},$ ψ は次式のように T^{n} コンパクト化する。

$$g_{\mu\nu}(x^{\mu}) = \frac{1}{\sqrt{\prod_{\alpha=1}^{n} L_{\alpha}}} \sum_{n_{1}=-\infty}^{\infty} \cdots \sum_{n_{n}=-\infty}^{\infty} g_{\mu\nu}^{(n_{1},\cdots,n_{n})}(x^{0}) e^{2\pi i \left(\sum_{\alpha=1}^{n} n_{\alpha} \frac{x_{\alpha}}{R_{\alpha}}\right)},$$
 (5.17)

 n_{α} は α 次元目の空間をコンパクト化した時の KK モードである。 $g_{\mu\nu}$ 、 ψ を古典場+量子場に展開し、 $V(\phi_{\alpha})$ を計算する [11, 12, 13]。

$$g_{\mu\nu} = \delta_{\mu\nu} + h_{\mu\nu}, \quad \psi = \psi_c + \psi_q,$$
 (5.18)

 $\delta_{\mu\nu}$ 、 ψ_c は古典場を表し、 $h_{\mu\nu}$ 、 ψ_q は量子場である。

高次元重力ループからの有効ポテンシャル

高次元重力理論における1ループ有効ポテンシャルを求める。 $M_1 \times T^n$ 上の理論を考える。1 + n次元時空重力理論の作用は次式の様になる。

$$S = \int d^d x \sqrt{-g} \left(\kappa^{-2} R^{n+1} \right), \qquad \kappa^2 = 16\pi G_{n+1}.$$
 (5.19)

1+n次元計量 $g_{\mu\nu}$ にはn個のスカラー場 ϕ_{α} が含まれており、各空間次元に対応する radion となる。高次元から次元還元したときアインシュタイン重力理論になるよう、 $g_{\mu\nu}$ をワイ ルリスケーリングする。 α は各余剰次元を表す添字で、 $\alpha = 1, 2, \dots, n$ 、各空間次元に対応する radion は、 $\phi_1^{(0)}, \phi_2^{(0)}, \dots, \phi_n^{(0)}$ である。コンパクト化された空間の物理的な大きさは

$$\int_{0}^{2\pi R_{\alpha}} \sqrt{-g_{\alpha\alpha}} dx^{\alpha} = 2\pi R_{\alpha} \phi_{\alpha} \equiv L_{\alpha}, \qquad (5.20)$$

と定義され、radionsの真空期待値で決まる。

1 + n次元、 $M_1 \times T^n$ 上の重力理論のおける高次元重力ループからのポテンシャルへの 寄与 $V_{\text{eff}}(\phi_{\alpha})$ は、

$$V_{\text{gra}}(\phi_{\alpha}) = -d(d-3) \frac{\Gamma\left(\frac{1+n}{2}\right)}{2^{1+n+2\pi} \frac{3(n+1)}{2}} \left(\sum_{m_{\alpha}=-\infty}^{\infty} \sum_{\alpha=1}^{n} \left(\frac{L_{\alpha}^{2}}{2\pi}m_{\alpha}\right)^{2}\right)^{-\frac{1+n}{2}}, \quad (5.21)$$

となる。

高次元物質場ループからの有効ポテンシャル

高次元重力理論と相互作用する質量 μ の物質場からのポテンシャルを求める。重力理 論の時と同様に 1 + n 次元時空のうち、n 次元空間が T^n コンパクト化されている時空、 $M_1 \times T^n$ 上の理論を考える。d = 1 + n 次元時空フェルミオンの作用は次式で与えられる。

$$S = \int d^{d}x \sqrt{-g} \left[\bar{\psi}_{i} \left(i\gamma^{\mu} D_{\mu} - \mu \right) \psi_{i} \right], \quad \sqrt{-g} = \left(\det g_{\mu\nu} \right)^{1/2}, \tag{5.22}$$

$$g_{\mu\nu} = \begin{pmatrix} -\Phi & 0\\ 0 & \phi_{\alpha}^2 \delta_{\alpha_{\beta}} \end{pmatrix}, \quad \Phi = \left(\prod_{\alpha=1}^n \phi_{\alpha}\right)^2 \quad .$$
 (5.23)

 T^n コンパクト化する事で ψ は次のように展開される。

$$\psi(x^{\mu}) = \frac{1}{\sqrt{\prod_{\alpha=1}^{n} 2\pi R_{\alpha}}} \sum_{n_{p}=-\infty}^{\infty} \cdots \sum_{n_{n}=-\infty}^{\infty} \psi^{(n_{1}\cdots n_{n})}(x^{0}) e^{2\pi i \left(\sum_{\alpha=1}^{n} n_{\alpha} \frac{x_{\alpha}}{R_{\alpha}}\right)}.$$
 (5.24)

 α は各余剰次元を表す添字で、 $\alpha = 1, 2, \dots n_{\circ}$ (5.22)を展開し、重力理論の時と同様の 計算をする事でフェルミオンループからの1ループ有効ポテンシャルへの寄与は以下の ようになる。 $V_{\text{fer}}(\phi_{\alpha}, \mu)$ は時空の次元数が偶数次元のとき $V_{\text{even}}(\phi_{\alpha}, \mu)$ 、奇異次元のとき $V_{\text{odd}}(\phi_{\alpha}, \mu)$ とすると、

$$V_{\text{even}}(\phi_{\alpha},\mu) = d \sum_{m_{\alpha}=-\infty}^{\infty} \left(\frac{\mu^{\frac{1}{2}}}{2\pi}\right)^{1+n} \left\{\sum_{\alpha=1}^{n} \left(\frac{L_{\alpha}}{2\pi}m_{\alpha}\right)^{2}\right\}^{-\frac{1+n}{4}}$$

5.4. $M_1 \times T^n$ 理論における空間サイズの振舞

$$\times K_{-\left(\frac{1}{2}+\frac{n}{2}\right)} \left[\left(\sum_{\alpha=1}^{n} \left(L_{\alpha} m_{\alpha} \mu \right)^2 \right)^{\frac{1}{2}} \right], \tag{5.25}$$

$$V_{\text{odd}}(\phi_{\alpha},\mu) = (d-1) \sum_{m_{\alpha}=-\infty}^{\infty} \left(\frac{\mu^{\frac{1}{2}}}{2\pi}\right)^{1+n} \left\{\sum_{\alpha=1}^{n} \left(\frac{L_{\alpha}}{2\pi}m_{\alpha}\right)^{2}\right\}^{-\frac{1+n}{4}} \times K_{-\left(\frac{1}{2}+\frac{n}{2}\right)} \left[\left(\sum_{\alpha=1}^{n} (L_{\alpha}m_{\alpha}\mu)^{2}\right)^{\frac{1}{2}}\right].$$
(5.26)

d = 1 + n、 $K_a(x)$ は第二種変形ベッセル関数である。(5.25)、(5.26) が d = 1 + n次元、 $M_1 \times T^n$ 上の重力理論と相互作用する質量 μ を持つフェルミオンの有効ポテンシャルとなる。

5.4 $M_1 imes T^n$ 理論における空間サイズの振舞

5.3 節では $M_1 \times T^n$ 上の重力+フェルミオン理論における、有効ポテンシャル $V(\phi_{\alpha})$ を 求めた。 ϕ_{lpha} はコンパクト化された空間の大きさを表すパラメータである。 ϕ_{lpha} の VEV は 任意の値を選ぶ事ができるため各空間の大きさは独立に選ぶ事ができる。しかし、量子効 果を考慮すると各空間次元の radion が相互作用するため、コンパクト化された空間の大 きさ L_aの変化は他の空間の大きさの影響を受ける。コンパクト化された各空間次元の大 きさがどのように変化するのかは $V(\phi_{\alpha})$ を評価すれば良い。本節では 5.3 節で求めたポ テンシャルを解析し、各空間に対応する radion ϕ_{α} の変化をみる事で各空間次元の大きさ がどのように振舞うか調べる。具体的に n = 4、5 次元時空のポテンシャルを評価する事 でコンパクト化された空間サイズがどのように変化するか調べ、空間の大きさに非一様性 が現れるか調べる。本研究では空間次元は全てコンパクト化された状態から始め、各空間 の大きさに違いが生じる事を示せれば時空の4次元性を示す第一歩であると考える。ポテ ンシャルへの重力からの寄与は空間を縮め、フェルミオンからの寄与は空間を拡げる働き をする。よって、どの空間成分が拡がるか、縮まるかは重力とフェルミオンの寄与のどち らが勝っているか確認すればよい。各空間成分の radion ϕ_{α} についての重力、フェルミオ ンからの1ループ有効ポテンシャルへの寄与として (5.21)-(5.26) を得た。 $M_1 \times T^n$ 上での 重力+フェルミオン理論における有効ポテンシャルは $V(\phi_{\alpha}) = V_{\text{gra}}(\phi_{\alpha}) + V_{\text{fer}}(\phi_{\alpha},\mu)$ と なる。

5.4.1 1+4次元時空における有効ポテンシャル

n = 4の時、 $M_1 \times T^4$ 時空におけるポテンシャルは次式の様になる。重力ループからの寄与 $V_{\text{gra}}(\phi_1, \phi_2, \phi_3, \phi_4)$ は、

$$V_{\text{gra}}(\phi_{1},\phi_{2},\phi_{3},\phi_{4}) = -\frac{15}{128\pi^{7}} \left[\sum_{i=1}^{4} \sum_{m_{i}=1}^{\infty} \frac{1}{\left\{ \left(\frac{L_{i}m_{i}}{2\pi}\right)^{2} \right\}^{\frac{5}{2}}} + \sum_{i,j=1,(i

$$(5.27)$$$$

フェルミオンループからの寄与 $V_{\text{fer}}(\phi_1, \phi_2, \phi_3, \phi_4, \mu)$ は、

$$V_{\text{fer}}(\phi_{1},\phi_{2},\phi_{3},\phi_{4},\mu) = \frac{\mu^{\frac{5}{2}}}{4\pi^{5}} \left[\sum_{i=1}^{4} \sum_{m_{i}=1}^{\infty} \frac{K_{-\frac{5}{2}} \left[\left\{ (L_{i}\mu m_{i})^{2} \right\}^{\frac{1}{2}} \right]}{\left\{ \left(\frac{L_{i}m_{i}}{2\pi} \right)^{2} \right\}^{\frac{5}{4}}} + 2 \sum_{i,j=1,(i
(5.28)$$

5.4.2 有効ポテンシャル $V\left(\phi_{lpha} ight)$ の KK 和依存性と近似評価

観測される空間は3次元空間であり、余剰次元成分は小さいままである事から、空間 3次元は同様の振舞いをしていると仮定する。よって、以下の議論では $\langle \phi_1 \rangle = \langle \phi_2 \rangle = \langle \phi_3 \rangle$ と仮定する。n = 4の時、 $M_1 \times T^4$ 上での重力+フェルミオン理論のポテンシャル $V(\phi_1, \phi_2, \phi_3, \phi_4)$ にはKKモードが4つ現れる。 $V(\phi_1, \phi_2, \phi_3, \phi_4)$ の振舞を調べるとき、KK 和 n_{α} は ∞ まで評価せずとも、 $n_{\alpha} = 1$ のみでも十分良い近似となっている (図 5.1)。また、 (5.27)、(5.28)にはKK 和が1つのみの項から4つ含む項まであるが、全ての項を評価せず とも、KK 和が1つの項のみでも十分良い近似となる (図 5.2)。よって、 $V(\phi_1, \phi_2, \phi_3, \phi_4)$ を近似的に評価するには、(5.27)、(5.28)の1項目に注目すれば良い。図 5.1、図 5.2 は $V(\phi_1, \phi_2, \phi_3, \phi_4) = (5.27) + 2 \times (5.28)$ 、 $R_1 = R_2 = R_3 = 10^{-7} \text{GeV}^{-1}$ 、 $\mu = 10^7 \text{GeV}$ 、 $R_4 = 10^{-7} \text{GeV}^{-1}$ 、 $\phi_1 = 100$ とした時の ϕ_4 についてのポテンシャルを描いている。

図 5.1: ϕ_4 , $\phi_1 = 100$ としたときの有効ポテ ンシャル。(5.27)、(5.28)の全ての項につい て評価している。実線は KK 和 $m_{\alpha} = 1$ 、破 線は $m_{\alpha} = 1 - 2$ 、2 重破線は $m_{\alpha} = 1 - 10$ と した。 図 5.2: ϕ_4 , $\phi_1 = 100$ としたときの有効ポテ ンシャル。実線は KK 和 $m_{\alpha} = 1$ とし (5.27)、 (5.28) の全項について、破線は $m_{\alpha} = 1$ とし (5.27)、(5.28) の1項目について、2 重破線は $m_{\alpha} = 1 - \infty$ とし (5.27)、(5.28) の1項目に ついて評価した。

(5.27)、(5.28) について KK 和が1つだけの項は次の様に書き直す事ができる。

$$V_{\rm gra} = -\frac{15}{4\pi^2} \left[\frac{1}{L_1^5} \zeta\left(5\right) + \frac{1}{L_2^5} \zeta\left(5\right) + \frac{1}{L_3^5} \zeta\left(5\right) + \frac{1}{L_4^5} \zeta\left(5\right) \right].$$
(5.29)

フェルミオン ψ からの寄与については無限和はポリログ関数を用いて表す事がでる。ポ リログ関数 $Li_n(z) = \sum_{k=1}^{\infty} z^k / k^n, n = 1, 2, 3 \cdots, L_{\alpha} = 2\pi R_{\alpha} \phi_{\alpha}, c$ はフェルミオンの数 である。

$$V_{\text{fer}} = \frac{3c}{\pi^2} \left[\frac{1}{L_1^5} \left\{ Li_5\left(e^{-L_1\mu}\right) + L_1\mu Li_4\left(e^{-L_1\mu}\right) + \frac{1}{3}L_1^2\mu^2 Li_3\left(e^{-L_1\mu}\right) \right\} \right]$$

第5章 時空の4次元性

$$+ (L_1 \leftrightarrow L_2) + (L_1 \leftrightarrow L_3) + (L_1 \leftrightarrow L_4)].$$
(5.30)

(5.29)から、3 次元空間が十分大きく、4次元目の空間のみコンパクト化された状態 $L_1, L_2, L_3 \rightarrow \infty$ のとき、

$$V_{\rm gra} \simeq -\frac{15}{4\pi^2} \left(\frac{1}{L_4^5} \zeta(5) \right),$$
 (5.31)

となり、 $M_4 \times S^1$ のときの結果と一致する [8]。

5.4.3 5次元時空における各空間サイズの変化

本節ではコンパクト化された空間が4つあるとき、各空間の大きさがどのように変化 するか調べるために、有効ポテンシャル (5.27)、(5.28) を評価する。(5.30) に現れる、ポ リログ関数は次の様に近似できる。 $\beta = f(\phi_{\alpha}, R_{\alpha}, \mu)$ としたとき、 β の小さい領域では $Li_n(e^{-\beta}) \simeq \zeta(n) - \beta \zeta(n-1)$ 。一方、 β の大きい領域では $Li_n(e^{-\beta}) \simeq 0$ となる。空間の 大きさの変化を知るためには、各空間次元において、重力からの寄与と物質場からの寄与 のどちらが勝るかを見ればよい。重力からの寄与が大きければ空間は縮まり、物質場から の寄与が大きければ空間は拡がる。 $V(\phi_{\alpha})$ を解析するにあたり、 $R_1 = R_2 = R_3 = R_4 = 10^{-7} \text{GeV}^{-1}$ 、 $\mu = 10^7 \text{GeV}$ とし、フェルミオンの数 cは2つに固定している。

図 5.3: $\langle \phi_1 \rangle = \langle \phi_2 \rangle = \langle \phi_3 \rangle$ とした時の $\langle \phi_1 \rangle$,

 $\langle \phi_4 \rangle$ についての有効ポテンシャル V_{\circ}

図 5.4: ϕ_4 , $\phi_1 = 100$ における有効ポテン シャルV。破線は重力ループから、2 重破線 は c = 2 としたときのフェルミオンループか ら生じるポテンシャルV。実線は重力+フェ ルミオンからの寄与の和である。

 $V(\phi_1, \phi_2, \phi_3, \phi_4) = (5.27) + 2 \times (5.28)$ は、 $L_1 = L_2 = L_3$ として解析すると、図 5.3-図 5.6 のようになり、 $L_1, L_2, L_3 > L_4$ (図 5.5)や $L_1, L_2, L_3 < L_4$ (図 5.6)の領域で安定な真 空を得る事がわかる。その結果, $L_1, L_2, L_3 \gg L_4$ という4次元性を表す真空を得る事がで

54

図 5.5: $\langle \phi_1 \rangle \gg \langle \phi_4 \rangle$ におけるポテンシャル*V*の 3D プロット。

図 5.6: $\langle \phi_1 \rangle \ll \langle \phi_4 \rangle$ におけるポテンシャル V の 3D プロット。

きる。 $V(\phi_1, \phi_2, \phi_3, \phi_4)$ は近似的には (5.29)+ 2 × (5.30) を評価すればよい。

$$V(\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}) = V(\phi_{1}) + V(\phi_{2}) + V(\phi_{3}) + V(\phi_{4})$$

= $[V_{\text{gra}}(\phi_{1}) + V_{\text{fer}}(\phi_{1}, \mu)] + (\phi_{1} \leftrightarrow \phi_{2}) + (\phi_{1} \leftrightarrow \phi_{3}) + (\phi_{1} \leftrightarrow \phi_{4}),$
(5.32)

と書ける。よって、各空間について $\mathcal{O}(R_1 = R_2 = R_3 = R_4)^{-1}$ GeV $\simeq \mathcal{O}(\mu)$ GeV とした とき、 ϕ_{α} の小さい領域では

$$V(\phi_{\alpha}) = -\frac{15}{4\pi^2} \left(\frac{1}{L_{\alpha}^5} \zeta(5) \right) + \frac{3c}{\pi^2} \left(\frac{1}{L_{\alpha}^5} \zeta(5) \right),$$
(5.33)

となる。一方、 ϕ_{α} の大きい領域では

$$V(\phi_{\alpha}) = -\frac{15}{4\pi^2} \left(\frac{1}{L_{\alpha}^5} \zeta(5) \right), \qquad (5.34)$$

となる (図 5.4) 。このため、近似的には各空間で安定になる大きさはそれぞれほぼ独立 に決める事ができる。1-3次元が4つ目の空間に比べ十分大きい値で安定になる事がで き、空間の大きさに非一様性が生じる。その結果、時空の4次元性を再現できる可能性が ある。

第6章 まとめと今後の展望

高次元理論は弦理論などに応用され、素粒子理論において重要な理論である。しかし、 なぜ高次元時空から4次元時空が導かれるのかは素粒子物理論における長年の懸案であっ た。コンパクト化された空間のサイズは radion ϕ の真空期待値 $\langle \phi \rangle$ によって決まる。radion ϕ の振舞は重力ループから生じるポテンシャル $V(\phi)$ によって求められる。

現在観測されている3次元空間がインフレーションによって急激に膨張した事は観測に よって支持されている。しかし、従来のインフレーション模型ではインフレーションに適 したポテンシャルを得るためにはパラメータの微調整が必要であった。 $M_4 \times S^1$ 時空にお ける重力理論に含まれるスカラー場である radion ϕ をインフラトンと見なす事でインフ レーションを起こし、観測を良く再現できる事を示した。インフレーションを引き起こす ためのパラメータである、コンパクト化の半径、フェルミオンの質量は非常に広範囲にわ たる。radionによってインフレーションを引き起こす模型は以前より知られていた。しか し、いずれの模型も量子効果は考慮しておらず、観測の再現もされていなかった。 $M_4 \times S^1$ コンパクト化された理論では5次元目の空間がプランクスケール程度まで小さくなる過程 で3次元空間はインフレーションによって加速度膨張し大きくなる。高次元を用いたイン フレーション模型ではコンパクト化とインフレーションは全く異なる機構で起こると考え られていた。そのため、インフレーションを引き起こすスカラー場であるインフラトンと コンパクト化を担うスカラー場である radion がそれぞれ必要であった。しかし、radion inflation では1つのスカラー場のみでコンパクト化とインフレーションが同時に起こる事 を示した。

本研究では radion をインフラトンとみなすことで、インフレーションが起こる事を示 した。しかし、観測からはインフラトンとは別のスカラー場であるカーバトンも必要とな る可能性が示されている。このような模型はハイブリッドインフレーション模型と呼ばれ ている。ハイブリッドインフレーション模型に適したポテンシャルが高次元理論から導か れるかは今後の課題である。

高次元理論では3次元空間のみ十分拡大し、余剰次元空間は小さくならなければならない。従来は自発的コンパクトによって4次元時空と余剰空間に分離されると仮定されてきた。しかし、この対称性の破れの機構は明らかになっておらず、なぜ4次元時空が実現されているのかは素粒子理論における長年の懸案であった。一方、弦理論では自発的コンパクト化ではなく、自発的膨張によって4次元時空のみ拡大する可能性がある事が示唆され

第6章 まとめと今後の展望

ていた。本研究ではこの示唆を場の理論を用いる事で時空の4次元性を説明できないか調 べた。

弦理論では時空の4次元性を担う鍵はワインディングモードである。しかし、これは弦 理論独自の自由度である事から、場の理論を用いて3次元空間のみ拡大する事を説明する ことは困難であると予想された。そのため、時空の4次元性を示す第一歩として、場の理 論を用いて全ての空間次元がコンパクト化された状態から3次元空間のみ十分拡大し、余 剰空間次元は小さく留まる可能性について調べた。そのために *M*₁ × *Tⁿ* 重力理論のおけ る1ループ有効ポテンシャルを評価した。その結果、3次元空間のみ十分拡がり、余剰空 間は小さく留まる安定な真空がある事を示した。

本研究では、色々な可能性の一つとして、4次元性が示される可能性がある事を示した。 しかし、必ずしも3次元空間のみが拡大するわけではない。時空の4次元性を導く機構が 場の理論にあるのか解明されていない。場の理論を用いた議論において、必ず3次元空間 のみが拡大するか明らかではなく、さらなる議論を要する。

5次元カスナー計量では、同程度のサイズに丸められた空間のうち時間発展にともない 3次元空間は拡大し、5次元目の空間は縮まる。しかし、何れかの時期にインフレーショ ンを経なければならず、空間をは指数関数的に膨張されるため、小さくなった5次元目の 空間も大きくなってしまうと予想される。この問題は radion inflation のように5次元目 がコンパクト化される過程でインフレーションが起こるならば解決される。 $M_1 \times T^4$ 時空 から重力の量子効果によって3次元空間のみ十分拡がり5次元目の空間のみ小さく留まり れば $M_4 \times S^1$ 時空になると考えられる。 $M_4 \times S^1$ 時空になった後、radion inflation によっ て3次元空間はインフレーションによって拡大し、5次元目の空間は縮まるという可能性 が考えられる。

58

謝辞

稲見武夫先生には6年間に渡り指導していただきました。研究、私生活両面において助 言していただきました。深く感謝申し上げます。博士課程2年次からインフレーションの 研究を始め、積極的に研究会で発表する事を勧めていただきました。研究会などで多くの 人と議論することにより、その重要さと楽しさを学ぶ事ができました。また、退官された 後も博士課程修了のための道筋を示していただきました。重ねて感謝申し上げます。

香取眞理先生は稲見先生が退官された後、博士課程を修了するために指導教官を引き受けてくださいました。修了のために多くの時間を費やしていただき、助言していただきました。心より御礼申し上げます。

素粒子論研究室に着任された中村真先生は博士課程5年次後期から指導教官を引き受け てくださいました。ご多忙にも関わらず、博士論文の完成、研究のために多くの時間を費 やしていただき、ご指摘いただきました。心より感謝申し上げます。

塚原裕史氏、西岡史絵氏には修士課程1年の頃から研究、私生活について多くの助言を いただきました。特に博士課程3年次には精神的、身体的に不調を来たし行き詰まってい た時期に、お忙しいにも関わらず多くの時間を割いて相談に乗っていただきました。常に 真剣に相談に乗っていただき、助言、励ましをいただきました。ご厚情のほど心より感謝 申し上げます。

林家民氏は宇宙論の専門家であり、些細な疑問にも答えていただき、議論していただき ました。また、研究の進捗をいつも気に掛けてくださり、励ましてくださいました。感謝 申し上げます。

最後に、研究のためにあらゆる面で常に支え続けてくれた両親に心より感謝します。

付 録A アインシュタイン重力理論にお ける関係式

本章では、論文中でのアインシュタイン重力理論における定義、性質について計量を用 いた基本的な公式をまとめる。本章では時空は4次元として、 $\mu = 0, 1, \dots, 3$ とする。平 坦な時空での計量 $\eta_{\mu\nu}$ は次式の様に定義する。

$$\eta_{\mu\nu} = \begin{pmatrix} -1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}.$$
 (A.1)

アインシュタイン方程式は、

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}.$$
 (A.2)

Λ は宇宙項、 $T_{\mu\nu}$ はエネルギー運動量テンソルである。これは、時空の構造 $g_{\mu\nu}$ と物質 $T_{\mu\nu}$ の関係を表している。ここで、リーマンテンソル

$$R^{\mu}{}_{\alpha\beta\gamma} \equiv \partial_{\beta}\Gamma^{\mu}{}_{\alpha\gamma} - \partial_{\gamma}\Gamma^{\mu}{}_{\alpha\beta} + \Gamma^{\mu}{}_{\lambda\beta}\Gamma^{\lambda}{}_{\alpha\gamma} - \Gamma^{\mu}{}_{\lambda\gamma}\Gamma^{\lambda}{}_{\alpha\beta}.$$
(A.3)

クリストッフェル記号

$$\Gamma^{\alpha}{}_{\beta\gamma} = g^{\alpha\mu}\Gamma_{\mu\beta\gamma} = g^{\alpha\mu}\frac{1}{2}\left(g_{\mu\beta,\gamma} + g_{\mu\gamma,\beta} - g_{\beta\gamma,\mu}\right),\tag{A.4}$$

である。

リッチテンソルは次式で定義される。

$$R_{\alpha\beta} \equiv R^{\mu}{}_{\alpha\mu\beta}.\tag{A.5}$$

また、リッチスカラーは次式で定義される。

$$R \equiv R^{\mu}{}_{\mu} = g^{\alpha\beta} R^{\mu}{}_{\alpha\mu\beta}. \tag{A.6}$$

付 録 B 高次元重力理論の有効ポテン シャルの計算

本章では高次元重力理論における1ループ有効ポテンシャルを求める。d = p + n次元 時空のうち、n次元空間が T^n コンパクト化されている時空、 $M_p \times T^n$ 上の理論を考える。 d次元時空重力理論の作用は次式の様になる。

$$S = \int d^d x \sqrt{-g} \kappa^2 R, \qquad \kappa^{-2} = 16\pi G_d, \tag{B.1}$$

$$g_{MN} = \begin{pmatrix} \Phi g_{\mu\nu} & 0\\ 0 & \phi_{\alpha}^2 \delta_{\alpha\beta} \end{pmatrix}, \qquad \Phi \equiv \left(\prod_{\alpha} \phi_{\alpha}\right)^{-\frac{2}{(p-2)}}.$$
 (B.2)

 $R \operatorname{id} x \operatorname{conv} y + x \operatorname{conv} z + x \operatorname{$

 T^n コンパクト化する事で g_{MN} は次のように展開される。

$$g_{MN}(x^M) = \frac{1}{\sqrt{\prod_{\alpha=1}^n 2\pi R_\alpha}} \sum_{n_p=-\infty}^\infty \cdots \sum_{n_n=-\infty}^\infty g_{MN}^{(n_p\cdots n_n)}(x^0) e^{2\pi i \left(\sum_{\alpha=1}^n n_\alpha \frac{x_\alpha}{R_\alpha}\right)}.$$
 (B.3)

$$L_{\alpha} = 2\pi R_{\alpha} \phi_{\alpha}, \tag{B.4}$$

 α は各余剰次元を表す添字で、 $\alpha = 1, 2, \dots n$ 、各空間次元に対応する radion は、 $\phi_p^{(0)}, \phi_{(p+1)}^{(0)}, \dots, \phi_n^{(0)}$ である。コンパクト化された空間の物理的な大きさは L_{α} で定義され、radion の 真空期待値で決まる。

ポテンシャルへの寄与を求めるには、重力の作用 (B.1) にゲージ固定項とゴースト項を 加え、汎関数積分 (B.5) を考えれば良い。

$$Z = \int \mathcal{D}\mu e^{i\left[S + S_{\rm gf} + S_{\rm gh}\right]}.$$
 (B.5)

付録 B 高次元重力理論の有効ポテンシャルの計算 Sはd次元重力作用、 S_{gf} はゲージ固定項、 S_{gh} はゴースト項である。ゴースト場を C_M 、 \bar{C}^{M} 、補助場を B_{M} とすると、Zは次式の様になる[11, 12, 13]。

$$Z = \int \mathcal{D}\mu \exp \left\{ \times \left(i \int d^{D}x \times \left[-(-g)^{1/2} \frac{R}{\kappa^{2}} + \frac{1}{2} (-g)^{1/2} \alpha B_{M} B_{N} g^{MN} + i (-g)^{1/2} B_{M} \left(\partial^{N} h_{N}^{M} - \frac{1}{2} \beta \partial^{M} h_{M}^{N} \right) - i (-g)^{1/4} \bar{C}^{M} \Delta^{N}{}_{M} C_{N} \right] \right\}.$$
 (B.6)

ここで、 Δ は De-witt-Faddeev-Popov matrix であり、経路積分の測度 D_{μ} は次式で与え られる。

$$\mathcal{D}\mu \equiv \left(\prod_{M \ge N} \mathcal{D}\left[\left(-g\right)^{\frac{(d-4)}{4d}} \hat{g}_{MN}\right] \mathcal{D}\left[\left(-g\right)^{\frac{(d+2)}{4d}} \bar{C}^{M}\right] \mathcal{D}C_{M} \mathcal{D}\left[\left(-g\right)^{\frac{1}{4}} B_{M}\right]\right).$$
(B.7)

1ループでの 寄与を求めるためには、

$$g_{MN} = g_{MN}^0 + h_{MN}, (B.8)$$

と展開し、 $h_{\mu\nu}$ の2次まで求めれば良い。hの2次についての項を $S^{(2)}$ とすると、

$$Z = \int \mathcal{D}\mu e^{i\left[S^{(2)} + S_{\rm gf} + S_{\rm gh}\right]},\tag{B.9}$$

となる。1 ループ有効ポテンシャル $V_{\text{eff}}\left(\phi_{\alpha}
ight)$ は、

$$Z = e^{-iV_{\text{eff}}(\phi_{\alpha})\int d^d x}.$$
(B.10)

 $M_p \times T^n$ の様にコンパクト化された理論について考える。n次元が T^n コンパクト化さ れた理論では、

$$\int d^d x = \int_0^{2\pi R_\alpha} d^n x_\alpha \int d^p x = 2\pi R_\alpha \int d^p x, \qquad \alpha = p - 1, \cdots n,$$

となる。ここで、

$$-i\ln\int \mathcal{D}\mu e^{i\left[S^{(2)}+S_{\rm gf}\right]} = -i\ln\int \mathcal{D}\mu e^{i\left[\int d^d x \left(h^{LK}\left[S_{2,LK}^{MN}\right]h^{MN}\right)\right]} = \left(\det S_2\right)^{-\frac{1}{2}}.$$
 (B.11)

 $M_p \times T^n$ コンパクト化された重力理論からの有効ポテンシャル $V(\phi_{\alpha})$ は

$$V(\phi_{\alpha}) = \frac{1}{2\pi R_{\alpha}\sqrt{-g}} \int \frac{d^{p}k}{(2\pi)^{p}} \left(\frac{i}{2} \operatorname{tr} \ln S_{2} - i \operatorname{tr} \Delta\right), \qquad (B.12)$$

となる。

次に、S₂を求めるために d 次元重力作用を揺らぎ h の 2 次まで展開する。

$$\mathcal{L}_{\text{gra}}^{(2)} = \frac{1}{4} h_M^N \left(\partial^2 h_N^M - 2 \partial_L \partial_N h^{ML} \right) + \frac{1}{2} h^{MN} \partial_M \partial_N h - \frac{1}{4} h \partial^2 h, \qquad (B.13)$$

となる。ゲージ固定項 \mathcal{L}_{gf} 、ゴースト項 \mathcal{L}_{gh} を次のようにする。

$$\mathcal{L}_{\rm gf} = -\frac{1}{2\alpha} \sqrt{-g} \left(\partial_M h^M_{\ N} - \frac{1}{2} \beta \partial_N h^M_{\ M} \right)^2. \tag{B.14}$$

 α 、 β はゲージパラメータである。 対応するゲージ条件は、

$$(-g)^{\frac{1}{4}} \left(\partial_M h^M_{\ N} - \frac{1}{2} \beta \partial_N h^M_{\ M} \right) = F^N.$$
(B.15)

hの2次の項を整理すると、

$$\mathcal{L}_{gf}^{(2)} = h_M^{\ L} \left(\frac{1}{2\alpha} \left(\partial_N \partial_L h^{ML} - \beta \partial_N \partial^M h \right) \right) + \frac{\beta^2}{8\alpha} h \partial^2 h. \tag{B.16}$$

ゴースト項は、

$$\mathcal{L}_{gh} = -i\bar{C}^{M} \left(D_{N}D^{N}C_{M} - \left(\beta D_{M}D_{N} - D_{N}D_{M}\right)C^{N} \right)$$
$$\equiv i\bar{C}^{M}\Delta_{M}^{N}C_{N}.$$
(B.17)

よって、

$$\mathcal{L}_{\text{gra}} + \mathcal{L}_{\text{gf}} = -\frac{1}{2} h^{AB} \left[\left(\frac{1}{2} \delta^M_A \delta^N_B - \frac{1}{2} \left(1 - \frac{\beta^2}{2\alpha} \right) g^0_{AB} g^{0MN} \right) k^2 - \left(1 - \frac{1}{\alpha} \right) \delta^M_A k_B k^N + \left(1 - \frac{\beta}{\alpha} \right) g^{0MN} k_A k_B \right] h_{MN}$$
$$\equiv -\frac{1}{2} h^{AB} S^{(k) \ MN}_{2,AB} h_{MN}, \qquad (B.18)$$

を得る。

$$S_{2,AB}^{(k)MN} = \left[\left(\frac{1}{2} - \frac{1}{d} \left(1 - \frac{1}{\alpha} \right) \right) \delta_A^M \delta_B^N + \left(-\frac{1}{2} \left(1 - \frac{\beta}{2\alpha} \right)^2 + \frac{1}{d} \left(1 - \frac{\beta}{\alpha} \right) \right) g_{AB}^0 g^{0MN} \right] k^2,$$
(B.19)

$$\Delta_M^{(k)N} = \left(1 + \frac{1}{d}\left(1 - \beta\right)\right)\delta_M^N k^2. \tag{B.20}$$

 $c_{l}(\alpha,\beta)$ を k_{M} 依存しないゲージパラメータの関数とすると、 $S_{2,AB}^{(k)MN}$ 、 $\Delta_{M}^{(k)N}$ は $C_{l}(\alpha,\beta)k_{M}k^{M}$

の形にできるため次の形になる。

$$V_{\text{eff}}(\phi_{\alpha}) = -\frac{1}{\prod_{\alpha=1}^{n} 2\pi R_{\alpha} \sqrt{-g}} (-i) \sum_{m_{\alpha}=-\infty}^{\infty} \\ \times \int \frac{d^{p}k}{(2\pi)^{p}} \left\{ \frac{1}{4} d(d-3) \ln \left[k^{2} \Phi^{-1} + \sum_{\alpha=1}^{n} \frac{n_{\alpha}^{2}}{R_{\alpha}^{2} \phi_{\alpha}^{2}} \right] \right. \\ \left. + \frac{1}{2} \sum_{l=1}^{d(d+1)/2} \ln C_{S,l}(\alpha,\beta) - \sum_{l=1}^{d} \ln C_{\Delta,l}(\alpha,\beta) \right\},$$
(B.21)

 ϕ_{α} 依存していない項は d次元 cosmological counter term によって相殺できるため、 ϕ 依 存項のみ求めれば良い。ユークリッド化し、

$$I = \sum_{m_{\alpha}=-\infty}^{\infty} \ln \int_{-\infty}^{\infty} \frac{d^p k}{(2\pi)^p} \left[k^2 \Phi^{-1} + \sum_{\alpha=1}^n \frac{n_{\alpha}^2}{R_{\alpha}^2 \phi_{\alpha}^2} \right].$$
(B.22)

とする。 $\zeta(s)$ を次の様に定義する。

$$I = -\zeta'(0), \qquad \zeta(s) \equiv \sum_{m_{\alpha} = -\infty}^{\infty} \int \frac{d^{p}k}{(2\pi)^{p}} \left[k^{2} \Phi^{-1} + \sum_{\alpha = 1}^{n} \frac{n_{\alpha}^{2}}{R_{\alpha}^{2} \phi_{\alpha}^{2}} \right]^{-s}.$$
 (B.23)

 $V_{
m gra}\left(\phi_{lpha}
ight)$ は $\zeta'\left(s
ight)$ を用いて以下の様に書ける。

$$V_{\rm gra}(\phi_{\alpha}) = -\frac{1}{4}d(d-3)\frac{1}{\prod_{\alpha=1}^{n}2\pi R_{\alpha}\sqrt{-g}}\zeta'(0).$$
(B.24)

よって、以下では $\zeta'(s)$ を計算する。ここで、

$$Z^{-s} = \frac{1}{\Gamma(s)} \int_0^\infty dt \ t^{s-1} e^{-zt},$$
 (B.25)

を用いて $\zeta(s)$ を書き直す。

$$\zeta(s) = \frac{1}{\Gamma(s)} \sum_{n_{\alpha} = -\infty}^{\infty} \int_{0}^{\infty} dt \ t^{s-1} \int_{-\infty}^{\infty} \frac{d^{p}k}{(2\pi)^{p}} e^{-\left[k^{2}\Phi^{-1} + \sum_{\alpha=1}^{n} \frac{n_{\alpha}^{2}}{R_{\alpha}^{2}\phi_{\alpha}^{2}}\right]t}.$$
 (B.26)

 $\zeta(s)$ を微分すると、

$$\zeta'(0) = \sum_{n_{\alpha} = -\infty}^{\infty} \frac{\pi^{\frac{p}{2}}}{(2\pi)^{p}} \Phi^{\frac{p}{2}} \int_{0}^{\infty} dt \ t^{-\frac{p}{2}-1} e^{-\sum_{\alpha=1}^{n} \frac{4\pi^{2}}{L_{\alpha}^{2}} n_{\alpha}^{2} t}.$$
(B.27)

ここで、ポアソン和公式を用いる。

$$\sqrt{\gamma_{\alpha}} \sum_{m_{\alpha} = -\infty}^{\infty} F\left(\gamma_{\alpha} m_{\alpha}\right) = \sqrt{\beta_{\alpha}} \sum_{n_{\alpha} = -\infty}^{\infty} f\left(\beta_{\alpha} n_{\alpha}\right), \quad \beta_{\alpha} \gamma_{\alpha} = 2\pi.$$
(B.28)

 $F(\gamma_{\alpha}m_{\alpha})$ は $f(\beta_{\alpha}n_{\alpha})$ のフーリエ変換である。

$$\zeta'(0) = \frac{\pi^{\frac{p}{2}}}{(2\pi)^p} \Phi^{\frac{p}{2}} \pi^{\frac{n}{2}} \int_0^\infty dt \, t^{-\left(\frac{p}{2} + \frac{n}{2}\right) - 1} \prod_{\alpha=1}^n \left(\frac{L_\alpha}{2\pi}\right) \sum_{m_\alpha = -\infty}^\infty e^{-\sum_{\alpha=1}^n \frac{L_\alpha^2 m_\alpha^2}{4t}}.$$
 (B.29)

ここで、ガンマ関数、

$$\Gamma(z) \equiv \int_0^\infty du \, e^{-u} u^{z-1},\tag{B.30}$$

を用いると、

$$\zeta'(0) = \frac{\Gamma\left(\frac{p+n}{2}\right)}{2^p \pi^{\frac{n+3p}{2}}} \Phi^{\frac{p}{2}} \prod_{\alpha=1}^n \left(\frac{L_\alpha}{2\pi}\right) \left(\sum_{m_\alpha=-\infty\alpha=1}^\infty \sum_{\alpha=1}^n \left(\frac{L_\alpha^2}{2\pi}\right)^2 m_\alpha^2\right)^{-\frac{p+n}{2}},\tag{B.31}$$

と求まる。有効ポテンシャルは、

$$V_{\rm grav}(\phi_{\alpha}) = -d(d-3) \frac{\Gamma\left(\frac{p+n}{2}\right)}{2^{p+n+2\pi} \pi^{\frac{3(n+p)}{2}}} \left(\sum_{m_{\alpha}=-\infty}^{\infty} \sum_{\alpha=1}^{n} \left(\frac{L_{\alpha}^{2}}{2\pi}m_{\alpha}\right)^{2}\right)^{-\frac{p+n}{2}}, \quad (B.32)$$

となる。(B.32) がd = p + n次元、 $M_p \times T^n$ 上の重力理論における有効ポテンシャルである。

次に、高次元重力場と相互作用する物質場として質量を持つフェルミオンを考えた時の 1ループ有効ポテンシャルを求める。フェルミオン質量を μ とする。高次元重力理論にお ける有効ポテンシャルの同様の計算を行い、 $M_1 \times T^n$ 理論における有効ポテンシャルと して次式を得る。 $V_{\text{fer}}^{\text{even}}(\phi_{\alpha})$ は偶数次元における有効ポテンシャル、 $V_{\text{fer}}^{\text{odd}}(\phi_{\alpha})$ は奇数次元 のそれである。

$$V_{\text{fer}}^{\text{even}}(\phi_{\alpha}) = d \sum_{m_{\alpha}=-\infty}^{\infty} \left(\frac{\mu^{\frac{1}{2}}}{2\pi}\right)^{1+n} \left\{\sum_{\alpha=1}^{n} \left(\frac{L_{\alpha}}{2\pi}m_{\alpha}\right)^{2}\right\}^{-\frac{1+n}{4}} K_{-\left(\frac{1}{2}+\frac{n}{2}\right)} \left[\left(\sum_{\alpha=1}^{n} \left(L_{\alpha}m_{\alpha}\mu\right)^{2}\right)^{\frac{1}{2}}\right], \tag{B.33}$$

$$V_{\text{fer}}^{\text{odd}}(\phi_{\alpha}) = \left(d-1\right) \sum_{m_{\alpha}=-\infty}^{\infty} \left(\frac{\mu^{\frac{1}{2}}}{2\pi}\right)^{1+n} \left\{\sum_{\alpha=1}^{n} \left(\frac{L_{\alpha}}{2\pi}m_{\alpha}\right)^{2}\right\}^{-\frac{1+n}{4}} K_{-\left(\frac{1}{2}+\frac{n}{2}\right)} \left[\left(\sum_{\alpha=1}^{n} \left(L_{\alpha}m_{\alpha}\mu\right)^{2}\right)^{\frac{1}{2}}\right]. \tag{B.34}$$

67

参考文献

- T. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin, Math. Phys. (1921), 966;
 O. Klein, Z. Phys. 37, 895 (1926) [Surveys High Energ. Phys. 5 (1986) 241.
- [2] I. Antoniadis, Phys. Lett. B **246**, 377 (1990).
- [3] A. Friedman, Z. Phys. 10, 377 (1922) [Gen. Rel. Grav. 31, 1991 (1999)];
 Z. Phys. 21, 326 (1924) [Gen. Rel. Grav. 31, 2001 (1999)].
- [4] D. Bailin and A. Love, Rept.Prog.Phys. **50** (1987) 1087-1170.
- [5] I. K. Wehus and F. Ravndal, Int.J.Mod.Phys. A19 (2004) 4671-4686.
- [6] Gerard 't Hooft and M.J.G. Veltman, Annales Poincare Phys. Theor. A20 (1974) 69-94.
- [7] M.J.G. Veltman (Utrecht U.), Conf.Proc. C7507281 (1975) 265-327.
- [8] T. Appelquist and A. Chodos, Phys. Rev. D 28, 772 (1983).
- [9] E. Ponton and E. Poppitz, JHEP 606:019(2001).
- [10] M.A.Rubin and B.D.Roth, Phys. Letter. B **127**(1983) 55.
- [11] T. Inami and O. Yasuda, Phys. Lett. B133 (1983) 180.
- [12] Y. Fujii and H. Nishino, Prog. Theor. Phys. 58 (1977) 381.
- [13] K. Fujikawa, University of Tokyo-INS preprint, INS-Rep-461(1983).
- [14] T. Applequist and A. Chodos and P. G. O. Freund, Addison-Wesley (1987).
- [15] 佐藤文隆編, 宇宙論と統一理論の展開, 岩波書店 (1987).
- [16] Y. Hosotani, Phys. Lett. B 126, 309 (1983);
 Y. Hosotani, Annals Phys. 190, 233 (1989);
 Y. Hosotani, Phys. Lett. B 129 (1983) 193;

C.S. Lim , N. Maru and K. Hasegawa, J.Phys.Soc.Jap. 77 (2008) 074101 ;
Y. Hosotani, Phys. Lett. B 129 (1983) 193 ;
I. Antoniadis, K. Benakli and M. Quiros, New J.Phys. 3 (2001) 20.

- [17] H. Hatanaka, T. Inami and C. S. Lim, Mod. Phys. Lett. A 13, 2601 (1998).
- [18] K. Hasegawa, C.S. Lim and Nobuhito Maru, Phys.Lett. B 604 (2004) 133-143.
- [19] K. Sato, Mon. Not. Roy. Astron. Soc. 195, 467 (1981);
 A. H. Guth, Phys. Rev. D 23, 347 (1981);
 A. A. Starobinsky, JETP Lett. 30, 682 (1979) [Pisma Zh. Eksp. Teor. Fiz. 30, 719 (1979)].
- [20] A. R. Liddle and D. H. Lyth, "Cosmological inflation and large-scale structure," *Cambridgr Univ. Pr. (2009)*.
- [21] A. R. Liddle and D. H. Lyth, "The Primodial Density Perturbation: Cosmology, Inflation and the Origin of Structure," *Cambridge Univ. Pr. (2009)*.
- [22] D. H. Lyth and A. Riotto, Phys. Rept. **314**, 1 (1999).
- [23] A. D. Linde, C.Concepts Phys. 5 (1990).
- [24] S. Weinberg, "Cosmology," Oxford Univ. Pr. (2008).
- [25] 佐藤勝彦 二間瀬敏史, シリーズ現代の天文学 第2巻 宇宙論 I-宇宙の始まり, 日本評 論社,(2008).
- [26] N. Arkani-Hamed, Hsin-Chia Cheng, P. Creminelli and L. Randall, Phys .Rev. Lett.
 90 (2003) 221302 ;
 D. E. Kaplan and N. J. Weiner, JCAP 0402 (2004) 005.
- [27] Y. Okada, Phys. Lett. B **150** (1985) 103.
- [28] N. Arkani-Hamed, S. Dimopoulos, N. Kaloper and J. March-Russell, Nucl. Phys. B 567, 189 (2000);
 C. Csaki, M. Graesser and J. Terning, Phys. Lett. B 456, 16 (1999);
 A. Mazumdar, R. N. Mohapatra and A. Perez-Lorenzana, JCAP 0406, 004 (2004);
 J. Trudeau and J. M. Cline, JHEP 1202 (2012) 081;
 M. Fairbairn, L. L. Honorez and M.H.G. Tytgat, Phys.Rev. D 67 (2003) 101302;
 C. Csaki, M. Graesser and J. Terning, Phys.Lett. B 456 (1999) 16-21;
 A. Mazumdar, R.N. Mohapatra and A. Perez-Lorenzana, JCAP 0406 (2004) 004;
N. Arkani-Hamed, S. Dimopoulos, N. Kaloper and J. March-Russell, Nucl.Phys. B 567 (2000) 189-228.

- [29] E. Komatsu et al., Astrophys. J. Suppl. 180, 330 (2009).
- [30] D.N. Spergel et al., Astrophys. J. Suppl. 148 (2003) 175.
- [31] R. H. Brandenberger and C. Vafa, Nucl. Phys. B **316** (1989) 391.
- [32] S. Watson and R. Brandenberger, JCAP 0311 (2003) 008;
 R. H. Brandenberger, Class. Quant. Grav. 28 (2011) 204005;
 R. H. Brandenberger, A. Nayeri, S. P. Patil and C. Vafa, Int. J. Mod. Phys. A22 (2007) 3621-3642;
 S. Kanno and J. Soda, Phys. Rev. D 72 (2005) 104023.
- [33] H Aoki, S Ito, H Kawai and Y Kitazawa, Prog. Theor. Phys. **99** (1998) 713-746.
- [34] A. Chodos and S. L. Detweiler, Phys. Rev. D 21 (1980) 2167.
- [35] K. Maeda, Phys. Lett. B **138** (1984) 269.
- [36] E. Kasner, Am. J. Math. **43** (1921) 217-221.
- [37] Y. Fukazawa, T. Inami, Y. Koyama, Prog. Theor. Eep. Phys. (2013) 021B01.