14 セルロースナノファイバーを強化材とした非石油系ナノコンポジットの開発

長谷朝博, 鷲家洋彦, 本田幸司, 礒野禎三, 柏井茂雄

1 目 的

近年、CO₂の排出量増大等による地球温暖化や石油等 の化石資源の枯渇が問題となってきている。また、化石 資源を原料としたプラスチック製品等を大量消費してき たことに起因する廃棄物処理が大きな課題となっている。 このような問題を解決するための方策の一つとして、化 石資源から持続的再生産が可能なバイオマス資源への転 換が試みられている。

セルロースは、地球上に豊富に存在するバイオマス資 源の一つであり、持続型社会構築のためのキーマテリア ルとして注目されている。一方、未だに利用法が確立さ れていない未利用バイオマスも日本国内には大量に存在 することから、その有効利用法の開発が求められている。 このようなニーズに対応することを目的として、木材を 原料とした粉末セルロースの湿式法による微細化に取り 組み、セルロースナノファイバー(CNF)を作製した。 CNF は、環境低負荷型素材であるだけではなく、従来 の無機フィラーに比べて低比重で高強度、低熱膨張等の 特徴を有していることから、複合材料の強化材として活 用されてきており、プラスチックをマトリックス材とした ナノコンポジットに関する研究が多数報告されている¹⁾。 本研究では、バイオマス素材である天然ゴムの機械的特 性の向上を目的として、湿式法で作製した CNF を用い、 天然ゴムとのナノコンポジット化を行った。

2 実験方法

2.1 材料

CNF の原料としては、精製木材パルプ(W-100、日本 製紙ケミカル(株)製 KC フロック)を使用した。CNF マ スターバッチの原料としては、天然ゴム(NR)のハイア ンモニア処理ラテックス(HA ラテックス)を用い、CNF と NR との界面親和性改善のため、メタクリル酸メチ ル(MMA)をグラフト重合した NR ラテックス(MG-10、 (株) レギテックス製:以下 MMA-g-NR と略記)を用い た。NR としては、リブドスモークドシート(RSS)1号 を使用し、ゴム用配合剤としてはステアリン酸,酸化亜 鉛,硫黄,加硫促進剤(スルフェンアミド系促進剤 BBS) を用いた.

2.2 CNFの作製

蒸留水に W-100 を加えて 5 wt%懸濁液を調製し、 ディスクミル(増幸産業(株)製、スーパーマスコロイ ダー MKCA6-2 型)により解繊処理することによって CNF を作製した。なお、解繊処理に際してはディスク 径:6 inch、砥石材質:シリコンカーバイド(120番)の ディスクを使用し、約 10 μ m のクリアランスを所定回 数通すことによって処理を行った。

2.3 CNFマスターバッチの作製

NR ラテックス、MMA-g-NR ラテックス、CNF を乾 燥重量で 100 g(配合比は重量比で NR: MMA-g-NR: MFC = 85.5:4.5:10)になるように各材料をビーカー に投入し、マグネチックスターラーによる撹拌混合 (200 rpm、1 時間)またはホモジナイザー(IKA 社製、 ULTRA- TURRAX T25)による撹拌混合(8000 rpm、10 分間)によりウエットマスターバッチを作製した。なお、 撹拌時に NR が析出沈殿するのを防ぐことを目的とし て、界面活性剤(SDS)を少量添加した。得られたウエッ トマスターバッチを 70℃のオーブンに 48 時間投入し、 乾燥物を得た。

2.4 CNF の粉砕処理

CNF の形状を電子顕微鏡で観察した結果、繊維径は ナノサイズであるものの繊維長が数十µm であったこと から、アスペクト比(繊維長/繊維径)が非常に大きく、 コンポジット中で CNF 同士が絡まりあっているものと 推察された。そこで、CNF のアスペクト比の低減を図 ることを目的として、遊星型ボールミル(Fritsch 社製、 P-5)による機械的粉砕(200 rpm、1 時間)を行った。粉 砕処理を行なった CNF はt-CNF と略記する。

2.5 CNF と NR とのナノコンポジットの作製

乾燥した CNF マスターバッチを二本ロールにより加 硫系配合剤とともに NR に混ぜ込み、CNF の充てん量 をゴム分 100 に対して 1、5、10 部 (phr)となるよう に調製し、表1に示すコンパウンドを作製した。得られ たコンパウンドを 160 ℃で所定時間加硫し、物性評価 用シートを作製した。なお、従来の補強剤との比較のた め、カーボンブラック (CB)を 20、40 部 (phr)配合した 加硫ゴムを作製した。

 2.6 ナノコンポジットの物性評価及び CNF の分散性 評価

引張試験については、(株)島津製作所製 AUTOGRAPH AG-1000D 型材料試験機を用いて JIS K 6251 に準じて 測定を行い、応力-ひずみ曲線及び 100 %モジュラス (M₁₀₀)、300 %モジュラス(M₃₀₀)を求めた。

試験速度:500 mm/min 試験温度:20 ℃ ナノコンポジット中での CNF の分散状態を確認する ために走査型電子顕微鏡((株)日立ハイテクノロジーズ 製、S-4800:以下 SEM と略記)による引張断面の観察 を行った。なお、SEM 観察試料には Pt を 5 nm 蒸着し、 加速電圧 1.5 kV で観察した。

表1 NR/CNF 及び NR/CB コンポジットの配合

	CNF0	CNF1	CNF5	CNF10) CB
NR	100	90	50	0	100
CNF マスターハッ	チ 0	11	55	100	-
CB	-	-	-	-	20or40
酸化亜鉛	6.0	6.0	6.0	6.0	6.0
硫黄	3.5	3.5	3.5	3.5	3.5
ステアリン酸	0.5	0.5	0.5	0.5	0.5
促進剤 BBS	0.7	0.7	0.7	0.7	0.7

結果と考察

3.1 CNF の形状観察

精製木材パルプから作製した CNF の SEM 像を図1 に示す。ディスクミルで解繊処理することによって繊維 径 20~30 nm にナノファイバー化されていることがわ かった。一方、繊維長については原料の W-100 と大き く変化せず、数十μm であった。ディスクミルによる解 繊処理において、1回目は処理時間が約 19 分であった が、処理回数が増えるにしたがって懸濁液の粘度が増大 し、1 パスあたりの処理時間が長くなった。なお、ディ スクミルによる処理については、試料の粘度が増大して 約 10 μm のディスククリアランスを通すのが困難に なった時点で十分に解繊できているものと考え、処理回 数の判断基準とした。

図1 CNFのSEM像

3.2 ナノコンポジットの物性及び CNF の分散性 3.2.1 未処理の CNF を用いたナノコンポジット

CNF は繊維径が 20~30 nm のナノファイバーである ことから、その形状効果(ナノサイズ効果)を活用するこ とで少量添加による大きな補強効果が期待できる。そこ で、マグネチックスターラーを用いて作製した CNF マ

スターバッチを NR に混ぜ込み、CNF の添加量が 1、 5 部(phr)となるように調製し、CB 配合物との比較を 行った。NR 及び NR/CNF、NR/CB ナノコンポジット の応力-ひずみ曲線を図2に示す。NR では、伸びが 400 %までの範囲では応力が小さいが、400 %を超える と伸長結晶化により応力が急激に増大し、補強剤なしで も引張強さは十分に大きい。このことから、NR の補強 では引張強さの向上だけではなく M100、M300 等の低伸 長時の引張応力の向上が要求される。CNF を 1 phr 添 加したものでは、引張強さが NR に比べて約3 MPa 向 上したものの、両者の応力-ひずみ挙動に顕著な相違は 認められなかった。一方、CNF を 5 phr 添加したもの では、M100、M300 等の各伸長域での引張応力が大きく 向上した(表 2)。また、CNF を 5 phr 添加したものの 応力--ひずみ挙動は CB を 20 phr 添加したものと同様 の傾向を示したことから、NR に CNF をわずか 5 phr 添加するだけで CB を 20 phr 添加したものと同程度の 補強効果が得られることが明らかになった。これは、 CNF のナノサイズ効果により、少量添加でも大きな補 強効果が得られたものと考えられる。

	M ₁₀₀ (MPa)	M_{300} (MPa)
CNF 0 phr	0.92	2.51
CNF 1 phr	0.98	2.50
CNF 5 phr	1.75	5.68
CB 20 phr	1.48	6.21

次に、ホモジナイザーを用いた高速撹拌混合により作 製した CNF マスターバッチを NR に混ぜ込み、CNF の添加量が 1、5 部(phr)となるように調製し、マグネ チックスターラーを用いてマスターバッチを作製したも のとの比較を行った。その結果、引張物性に関しては両 者に顕著な相違は認められなかった。

一方、CNF を 5 phr 添加した NR/CNF コンポジッ トの引張破断面の SEM 観察から、マグネチックスター ラーを用いてマスターバッチを作製したものでは、 CNF は全体的に細かく分散しているものの、所々に数 µm オーダーの凝集塊が存在していることがわかった (図 3)。これに対し、ホモジナイザーを用いてマスター バッチを作製したものでは、CNF がゴムマトリックス 全体に細かく均一に分散していることが明らかになった (図 4)。

図3 NR/CNF コンポジットの引張破断面の SEM 像 (マグネチックスターラーで作製したもの)

図4 NR/CNF コンポジットの引張破断面の SEM 像 (ホモジナイザーで作製したもの)

このように、CNF の凝集塊がなくなり分散性が向上 したにもかかわらず、引張物性に顕著な相違が認められ なかったのは、CNF のアスペクト比が大きく、マト リックス中で CNF が絡まり合うことにより、CNF 本 来の補強効果が発現しなかったものと考えられる。そこ で、次に CNF のアスペクト比の低減を図った。 3.2.2 t-CNF を用いたナノコンポジット

t-CNF を用いて作製した NR/t-CNF 及び NR/CB コ ンポジットのモジュラスを表3に示す。 M_{100} 等の 200%以下の低伸長域での引張応力は、t-CNFを5 phr 添加したものでは CB を 20 phr 添加したもの以上、t-CNFを10 phr 添加したものでは CB を 40 phr 添加し たもの以上になることが明らかになった。このように、 CNF のアスペクト比を低減することによって、低伸長 域の引張応力は向上した。一方、 M_{300} が逆に低くなっ たのは、界面活性剤として添加した SDS が t-CNF と NR との界面親和性に悪影響を及ぼしたためと考えられ る。

表3 NR/t-CNF 及び NR/CB コンポジットのモジュラス

	M ₁₀₀ (MPa)	M_{300} (MPa)
t-CNF 0 phr	0.92	2.51
t-CNF 1 phr	0.94	2.45
t-CNF 5 phr	1.95	5.16
t-CNF 10 phr	3.76	8.19
CB 20 phr	1.48	6.21
CB 40 phr	2.85	11.7

4 結 論

NR に CNF をわずか 5 phr 添加するだけで M_{100} 、 M_{300} 等の低伸長時の引張応力が大きく向上し、CB を 20 phr 添加したものと同程度の補強効果が得られた。 また、粉砕処理した t-CNF を用いた場合、10 phr 添加 するだけで 200 %以下の低伸長域における引張応力が CB を 40 phr 添加したものよりも大きくなった。

謝 辞

本研究を行うにあたり、ご協力いただきました(独)産業技 術総合研究所バイオマス研究センター 水熱・成分分離チー ムの遠藤貴士チーム長、李承桓研究員に深く感謝いたしま す。

参考文献

 例えば、藤井 透,高橋宣也,大窪和也,同志社大学 理工学研究報告,<u>45</u>,51 (2005).

(文責 長谷朝博)

(校閲 柏井茂雄)