Exotic non-magnetic order accompanied by antiferromagnetic short range order in URu₂Si₂

Yoshihito Miyako,*1 Hiroshi Amitsuka,*2 Naoto Metoki,*3 Masugu Sato,*3 and Kazuhiro Marumoto*4

*1 Graduate School of Science, Osaka University

*2 Graduate School of Science, Hokkaido University

*3 Advanced Science Research Center, Japan Atomic Energy Research Institute

^{*4} Department of Applied Physics, School of Engineering, Nagoya University

Some feature of URu₂Si₂ shows a phase transition at 17.5 K similar to spin density wave and superconductivity coexists below 1.5 K. The phase transition at 17.5 K is reviewed from the view point of quadrupolar ordering.

URu₂Si₂ is one of most interesting heavy fermion compounds which have been studied extensively.¹⁾ At early stage of research, neutron scattering and muon spin relaxation(μ SR) experiments have demonstrated the existence of weak magnetic ordering in heavy fermion compound URu₂Si₂ ($T_o =$ 17.5 K) which exhibits a superconducting phase transition at lower temperatures. Kohori *et al.* performed NMR experiments²⁾ on ²⁹Si in U(Ru_{1-x}Rh_x)₂Si₂, but they could not find any evidence to support the existence of static magnetic order in URu₂Si₂.

Related to this phase transition, we have suggested quadrupolar ordering from the measurement of nonlinear susceptibility³⁾ instead of static antiferromagnetic ordering. Since our study of the nonlinear susceptibility, the phase transition at T_o has been a controversial issue for the last 10 years. Many explanations have been proposed for the phase transition. One of them is the type-I antiferromagnetic order, which is claimed to be static for high quality single crystal of URu₂Si₂. However, the proposal of quadrupolar ordering was supported by experiments on the magnetic field dependence of T_o and the staggered ordered magnetic moment⁴) and on the point contact spectroscopy⁵ and by the recent neutron scattering experiment under pressure.¹

We found a first order antiferromagnetic phase transition at 1.5 GPa (P_c) in a single crystal of URu₂Si₂ by the neutron scattering experiment under hydrostatic pressure P. The staggered magnetic moment increased with pressure and the first order phase transition occurs at P_c with a jump of the staggered moment into $0.4 \,\mu_{\rm B}$ from $0.25 \,\mu_{\rm B}$ as shown in Fig. 1, without any change of the antiferromagnetic structure above and below P_c .

The antiferromagnetic state above P_c is an Ising type as described in a previous paper.¹⁾ The ordered moment aligns along the *c*-axis. These results prove that the antiferromagnetic order with the wave vector q(001) becomes static by pressure and below the P_c the antiferromagnetic order is parasitic. The correlation length also increases with pressure from 180 A at 2 K and at ambient pressure to more than 10^3 A at P > 0.6 GPa. A heavy fermion state evolves below the peak temperature, $T_{\max}(\chi)$, of the susceptibility which is around 50 K. In thermodynamic measurements of

Fig. 1. A staggered magnetic moment measured at $1.4\,\text{K}$ by a neutron scattering experiment for a single crystal of $\mathsf{URu}_2\mathsf{Si}_2$ as a function of the hydrostatic pressure.

URu₂Si₂, there is a clear anomaly in the specific heat at T_o and the phase transition at T_o is accompanied by lattice instability. The entropy change due to the phase transition is 0.2 Rln2/mol. K. The anomaly at T_o in the resistivity is quite similar to that of a SDW transition in rare earth metals and this suggests a gap opening in the Fermi surface in the a^* -and c^* -axis of the reciplocal lattice space.

An antiferro-quadrupolar order in Fig. 2 is compatible with an anomalous increase of the resistivity as well as the specific heat anomaly at T_o .

Thus, the pressure induced phase transition is a possible phase transition from an exotic phase, like quadrupolar order, accompanied by a parasitic antiferromagnetic short range order into a static type-I antiferromagnetic order.

The non-linear susceptibility of URu_2Si_2 is derived from the magnetic field dependence of the magnetization using the for-

^{*} H. Amitsuka and T. Sakakibara also proposed the $\Gamma_{5t}^{(2)}$ (or $\Gamma_{5t}^{(1)}$) doublet ground state before the Ref. 9 for $U_x Th_{1-x} Ru_2Si_2$ dilute alloy system in Ref. 10.

Fig. 2. Schematical figure of the antiferro-quadrupolar order.

mula of M = $\chi_0 H + \chi_2 H^3$, where χ_0 and χ_2 are the linear and non-linear susceptibility and H is an applied magnetic field. χ_0 has a kink at T_o , but χ_2 seems to show a critical behavior, as shown in Fig. 3. For magnetic phase transitions, which are ferromagnetic, antiferromagnetic and spin glass phase transitions, χ_2 has a negative sign in the paramagnetic phase. Therefore, the result in Fig. 3 predicts a possible non-magnetic phase transition. The temperature dependence of χ_2 closely follows that of the lattice thermal expansion coefficient, $\alpha_c - \alpha_a$ of c/a, where a and c are the lattice constant of URu₂Si₂.³⁾ Thus, the critical behavior of χ_2 seems to be dominated by a phase transition associated with lattice instability. The short range order seems to develop from around 50 K which is much higher than T_o , as can be seen in Fig. 3. Neutron scattering experiments⁶ have also predicted the existence of a large intensity of the inelastic magnetic excitation which has a large peak at T_o corresponding to $2.5\,\mu_{\rm B}$ and the inelastic excitation starts at 50 K or higher temperatures. Holland-Moritz et al.⁶⁾ suspected nonmagnetic quadrupole interactions or a charge-density wave as a possible origin for the observed spatial correlation and the triggering mechanism for the magnetic order.

Due to the large intensity of the inelastic neutron scattering, singlet — singlet crystalline field splitting model was proposed for the behaviors mentioned above.

Niuwenhuys⁷⁾ analyzed the magnetic susceptibility and magnetization of URu₂Si₂ and UPt₂Si₂ by crystalline field theory assuming that U is in the 4+ state having J = 4, the ³H₄ spin-orbit ground state. A singlet-singlet-doublet-singlet crystal field level scheme was used for both compounds. This model explains well the susceptibility and the magnetization of UPt₂Si₂, but not for URu₂Si₂. UPt₂Si₂ is CaBe₂Ge₂ type structure and the crystalline field level splittings were actually deduced to be singlet-50 K-singlet-12 K-doublet-14 K-singlet from the inelastic neutron scatter-

Fig. 3. Temperature dependence of the non-linear susceptibility, χ_{2}

ing experiment.⁸⁾ The inelastic neutron scattering peaks were observed because of the absence of a heavy fermion character ($\gamma = 37 \text{ mJ/mol. K}^2$) in UPt₂Si₂. The antiferromagnetic ordered moment is 1.9 $\mu_{\rm B}$ and the magnetic structure can be described as a type-I antiferromagnet. On the contrary, the susceptibility and the magnetization of URu₂Si₂ were not well fitted by Niuwenhuys's crystalline field model. It is most reasonable to assume a non-Kramers doublet ground state to explain the strong anisotropy of the susceptibility. This model can explain the large inelastic neutron scattering above T_o as the development of quardrupolar short range ordering from around 50 K.

We assumed before⁹⁾ the doublet, $\Gamma_{t5}^{(2)}$ (or $\Gamma_{t5}^{(1)}$), — singlet, $\Gamma_{t1}^{(1)}$, splitting of J multiplet ³H₄ for diluted uranium system $U_x La_{1-x} Ru_2 Si_2$ to explain the experiments of the susceptibility, magnetization and specific heat^{*}. The $\Gamma_{t5}^{(2)}$ state has a J_z component and no $J_{x,y}$ components, and is expressed as follows:

$$\begin{split} \Gamma_{t5}^{(2)} &= \phi(+) + i\phi(-)/2^{1/2} \\ &= \phi(+Q) \text{ and } \phi(+) - i\phi(-)/2^{1/2} \\ &= \phi(-Q), \end{split}$$

where

$$\langle \phi(+) \ J_z \ \phi(+) \rangle = +m, \quad \langle \phi(-) \ J_z \ \phi(-) \rangle = -m \langle \phi(+) \ J_z \ \phi(-) \rangle = \langle \phi(-) \ J_z \ \phi(+) \rangle = 0$$

and

$$\langle \phi(+Q) \ J_x^2 - J_y^2 \ \phi(+Q) \rangle = +Q/2,$$

 $\langle \phi(-Q) \ J_x^2 - J_y^2 \ \phi(-Q) \rangle = -Q/2.$

In the ordered state of the quadrupole moment, the groundstate wave function changes from $\phi(+Q)$ to $\phi(-Q)$ with respect to the U site at the body center and the corner of the body centered tetragonal crystal structure. The energy splitting between the $\phi(+Q)$ and $\phi(-Q)$ states is in proportion to Q and the inelastic neutron scattering intensity between the two states is in proportion to m. The magnetic moment, $2\mu_{\rm B} m$, is estimated to be $1.8\,\mu_{\rm B}$ from a high field magnetization measurement of U impurity in LaRu₂Si₂. The inelastic neutron scattering intensity becomes smaller above T_o because the lifetime of the splitted energy states, $\phi(+Q)$ and $\phi(-Q)$ becomes shorter.

We can understand qualitatively the quadrupolar ordering and the temperature dependence of the inelastic neutron scattering intensity, and an Ising-type antiferromagnetic state above P_c in terms of the $\Gamma_{t5}^{(2)}$ ground-state model. However, this model does not explain the rather small ordered staggered moment $(0.4 \,\mu_{\rm B})$ above P_c , although there could be a change in the Kondo temperature T_K . Furthermore, although $U_x {\rm La}_{1-x} {\rm Ru}_2 {\rm Si}_2$ diluted alloy shows a Fermi liquid behavior at low temperatures, $U_x {\rm Th}_{1-x} {\rm Ru}_2 {\rm Si}_2$ exhibits a non-Fermi liquid behavior in the susceptibility and specific heat.¹⁰ The origin for these different behaviors is not well understood although the importance of the contribution of the crystalline field excited level was predicted.¹¹

This paper is dedicated to the memory of the retirement of Professor A. Ito from Ochanomizu University.

References

 H. Amitsuka, M. Sato, N. Metoki, M. Yokoyama, K. Kuwahara, T. Sakakibara, H. Morimoto, S. kawarazaki, Y. Miyako, and J. A. Mydosh: Phys. Rev. Lett. 83, 5114 (1999).

- Y. Kohori, Y. Noguchi, T. Kohara, K. Asayama, H. Amitsuka, and Y. Miyako: Solid State Commun. 82, 479 (1992); T. Kohori: private communication.
- Y. Miyako, S. Kawarazaki, H. Amitsuka, C. C. Paulsen, and K. Hasselbach: J. Appl. Phys. **70**, 2680 (1991); Y. Miyako, H. Amitsuka, S. Kunii, and T. Kasuya: Physica B **186/188**, 236 (1993); Y. Miyako, H. Amitsuka, S. Kawarazaki, T. Taniguchi, and T. Shikama: Jpn. J. Appl. Phys., Ser. 8, 230 (1993).
- S. A. M. Mentink, T. E. Mason, S. Sullow, G. J. Niuwenhuys, A. A. Menovsky, and J. A. Mydosh: Phys. Rev. B 53, R6014 (1996).
- J. G. Rodrigo, F. Guinea, S. Vieira, and F. G. Aliev: Phys. Rev. B 55, 14318 (1997).
- E. Holland-Moritz, W. Schlabitz, M. Loewenhaupt, and U. Walter: Phys. Rev. B 39, 551 (1989).
- 7) G. J. Niuwenhuys: Phys. Rev. B **35**, 5260 (1987).
- M. B. Walker, Z. Tun, W. J. L. Buyers, A. A. Menovsky, and W. Que: Physica B **199/200**, 165 (1994).
- K. Marumoto, T. Takeuchi, and Y. Miyako: Phys. Rev. B 54, 12194 (1996).
- H. Amitsuka and T. Sakakibara: J. Phys. Soc. Jpn. 63, 736 (1994).
- 11) M. Koga and H. Shiba: J. Phys. Soc. Jpn. 64, 4345 (1995).