Studies of ⁹⁹Ru ions in metal oxides by means of time-differential perturbed-angular correlation and emission Mössbauer measurements

Yoshitaka Ohkubo, Yoshio Kobayashi, Kichizo Asai,*1 Shizuko Ambe,*2 Kaoru Harasawa,*3 Takuya Okada,*4 Seiichi Shibata,*5 and Fumitoshi Ambe

Nuclear Chemistry Laboratory

Radioactive 99 Rh ions were incorporated into α -Fe₂O₃, Fe₃O₄, and YBa₂Cu₃O₆ with the aid of radiochemical techniques, and the site of 99 Ru occupying and the valence of the Ru ion in each compound were determined by means of TDPAC and Mössbauer spectroscopy. It was observed that the valences of the Ru ions in α -Fe₂O₃ and Fe₃O₄ are unusually low, while it is normal in YBa₂Cu₃O₆. An idea concerning the valence of a Ru ion in oxides is proposed.

Introduction

The radioactive isotope ⁹⁹Rh is very useful for the studies of hyperfine interacions: it serves as the source nuclide of Mössbauer spectroscopy on 99 Ru as well as of γ - γ timedifferential perturbed-angular correlation (TDPAC). A simplified decay scheme of ⁹⁹Rh is shown in Fig. 1. Both TDPAC and emission Mössbauer measurements can be performed on the same sample with dilutely incorporated $^{99}\mathrm{Rh}$. Unlike TD-PAC, $^{99}\mathrm{Ru\text{-}M\ddot{o}ssbauer}$ spectroscopy can be applied only at low temperatures because the energy of Mössbauer γ rays from the first excited state (the intermediate state in TD-PAC) is as high as 90 keV. However, the isomer shift obtained by $^{99}\mathrm{Ru\text{-}M\ddot{o}ssbauer}$ spectroscopy provides information on the valence of Ru, which is not accessible by TDPAC. In the present work, we incorporated 99 Rh ions into α -Fe₂O₃, Fe₃O₄, and YBa₂Cu₃O₆, and determined the site where ⁹⁹Ru occupies and the valence of the Ru ion in each compound by means of TDPAC and Mössbauer spectroscopy. $\alpha\text{-Fe}_2\text{O}_3$ has the corundum structure and is antiferromagnetic below $T_{\rm N} = 950 \text{ K. Fe}_3 \text{O}_4$ is an inverse spinel and is a ferrimagnet with $T_{\rm C} = 858$ K. The oxygen ions in both iron oxides are close-packed. YBa₂Cu₃O₆ is an oxygen-deficient perovskitelike oxide, in which there are two kinds of copper sites, Cu-

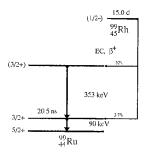


Fig. 1. Simplified decay scheme of $^{99}\text{Rh}{\rightarrow}^{99}\text{Ru}$.

- *1 Permanent address: The University of Electro-Communi-
- *2 Inorganic Chemical Physics Laboratory
- *3 Safety Center
- *4 Magnetic Materials Laboratory
- *5 Permanent address: INS, The University of Tokyo

1 and Cu-2. From the ionic radius of ${\rm Rh}^{3+}$, it is expected that Rh ions substitute Fe ions in iron oxides and Cu ions in ${\rm YBa_2Cu_3O_6}$.

Experimental procedures

Sample preparations About 97% enriched 99 Ru was irradiated with 12- or 13-MeV protons available from the RIKEN 160-cm cyclotron or the INS-SF cyclotron. A carrier-free aqueous solution containing 99 Rh³⁺ was obtained from the irradiated Ru target by radiochemical separation. For the preparation of iron oxides, 99 Rh in the solution was coprecipitated with ferric hydroxide. The precipitate was dried and then heated in air at 900 °C, and α -Fe₂O₃(99 Rh) was thereby obtained. In order to obtain Fe₃O₄(99 Rh), α -Fe₂O₃(99 Rh) was heated under reduced pressure at 1150 °C. For the preapration of YBa₂Cu₃O₆, CuO powder was added to the aqueous solution containing 99 Rh to let it adsorb the rhodium ions. Stoichiometric amounts of high purity of Y₂O₃, BaCO₃, and dried CuO with 99 Rh were milled, heated in oxygen at 950 °C, and then heated under reduced pressure at 760 °C. 3,4)

TDPAC and emission Mössbauer measurements The time spectra $N(\theta,t)$ of the 353-90 keV γ - γ cascade emitted from the excited states of ⁹⁹Ru were taken with a fast-slow setup with 25.4 mm-thick BaF₂ scintillators. θ and t denote the angle and the time interval, respectively, between the cascade γ rays. The four detector system was employed to obtain the directional anisotropy, $A_{22}G_{22}(t)$, defined by Eq. (1).

$$A_{22}G_{22}(t) = 2[N(\pi, t) - N(\pi/2, t)]/[N(\pi, t) + 2N(\pi/2, t)].$$
 (1)

Two detectors were used for detecting 353-keV γ rays, and the other two for detecting 90-keV γ rays.

For an ensemble of randomly oriented microcrystals with a unique static interaction, $G_{22}(t)$ is generally a function of the following quantities through the interaction Hamiltonian: the Larmor frequency $\omega_{\rm L}$, the electric quadrupole frequency

 $\omega_{\rm Q}$, the asymmetry parameter η of the electric field gradient (EFG), and the angles, θ and φ , describing the direction of the hyperfine magnetic field $H_{\rm hf}$ in the spherical coordinate system fixed to the principal axes of the EFG. When the interaction Hamiltonian consists only of a hyperfine magnetic interaction term,

$$A_{22}G_{22}(t) = A_{22}[1 + 2\cos(\omega_{\rm L}t) + 2\cos(2\omega_{\rm L}t)]/5.$$
 (2)

When the interaction Hamiltonian consists only of an axially symmetric quadrupole interaction term,

$$A_{22}G_{22}(t) = A_{22}[1 + 4\cos(6\omega_{Q}t)]/5.$$
(3)

⁹⁹Ru-emission Mössbauer spectra were obtained at 5 K with a conventional apparatus with a 2 mm-thick NaI(Tl) scintillator. The sample containing ⁹⁹Rh as a source was mounted on the driver, and enriched ⁹⁹Ru was used as an absorber.

Results

As an example, $A_{22}G_{22}(t)$ of ⁹⁹Ru in Fe₃O₄ at various temperatures, including a temperature above $T_{\rm C}$, are shown in Fig. 2(a). Figure 2(b) shows the frequency distributions of $A_{22}G_{22}(t)$. The frequency spectra obtained below $T_{\rm C}$ have two peaks. The ratio of frequencies at the two peaks are one to two, which is well described by Eq. (2). These mean that the dominant hyperfine interaction at 99 Ru in Fe₃O₄ is magnetic. In the frequency spectrum of $A_{22}G_{22}(t)$ obtained at 885 K, there is only one peak at $\omega = 0$ with a width ascribable to the quadrupole frequency, $6\omega_{\mathbf{Q}}$ [see Eq. (3)]. Therefore, at temperatures below $T_{\rm C}$ there should be a small EFG at $^{99}\mathrm{Ru}$ in Fe₃O₄ in addition to the large H_{hf} . The temperature dependence of $H_{\rm hf}$ suggests that there are two origins for the observed $H_{\rm hf}$: the major part is produced by the magnetic moments of Fe³⁺ via the supertransfer mechanism, and the minor one by that of the unpaired 4d electron of the ⁹⁹Ru ion itself.¹⁾ The sign of $\omega_{\rm L}$ was determined at room temperature by TDPAC, the experimental setup consisting of three detectors. Two detectors were placed at angles of $\pm 135^{\circ}$ with respect to a detector, and an external magnetic field was ap-

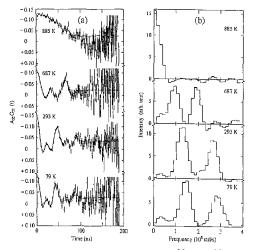


Fig. 2. (a) TDPAC spectra, $A_{22}G_{22}(t)$, of $^{99}\mathrm{Ru}(\leftarrow^{99}\mathrm{Rh})$ in Fe₃O₄ measured at 79 K, 293 K, 687 K, and 885 K, and (b) their frequency distributions. The solid curves in (a) represent the time spectra reproduced from the frequency distributions in (b).

plied perpendicular to the detector plane. From the negative sign of ω_L , we confirmed that $^{99}\mathrm{Rh}$ ions are in the octahedral sites of Fe₃O₄. $^{1)}$ In similar ways we confirmed that $^{99}\mathrm{Rh}$ ions substitute Fe ions in $\alpha\text{-Fe}_2\mathrm{O}_3^{\,2)}$ and exclusively Cu ions at the Cu-1 sites in YBa₂Cu₃O₆. $^{4)}$ The isomer shifts of $^{99}\mathrm{Ru}$ in $\alpha\text{-Fe}_2\mathrm{O}_3$, Fe₃O₄, and YBa₂Cu₃O₆ were determined to be -0.58, -0.76, and -0.26 mm/s, respectively, from the Mössbauer spectra obtained at 5 K.

Discussion

The isomer shift of ⁹⁹Ru correlates with the valence of ruthenium in oxides, 1) as shown in Fig. 3. According to this figure, the valence of 99 Ru in α -Fe₂O₃, Fe₃O₄, and YBa₂Cu₃O₆ can be assigned to be +3, $+2 \sim +3$, and +4, respectively. The temperature dependence of $H_{\rm hf}$ at $^{99}{\rm Ru}$ in Fe₃O₄ and the extraporated value at 0 K indicate that the valence of the Ru ion in this oxide cannot exactly be +2 or +3. Therefore, the above description $+2 \sim +3$ means that the Ru ion in Fe₃O₄ exists as a mixed state of Ru²⁺ and Ru³⁺. Considering that the minimum valence of a Ru ion in its pure oxides is +4, the valences of the Ru ions in α-Fe₂O₃ and Fe₃O₄ are unusually low, while it is normal in YBa₂Cu₃O₆. We notice that the valences of the Ru ions in α-Fe₂O₃ and Fe₃O₄ coincide with those of the substituted Fe ions. We propose the following idea. Dilutely incorporated Ru ions have a tendency to take the same valence as metal ions in the matrix do in the following conditions: 1) oxygen ions are close-packed; 2) the coordination number of Ru ions is the same as that for metal ions. For α -Fe₂O₃ and Fe₃O₄, both conditions hold. For YBa₂Cu₃O₆ the first condition does not hold. Since the average valence of the Cu ion at the Cu-1 site is +2.5 and low, the Ru ion is considered to take the minimum valence in its pure oxide, +4. We are going to test our idea by measuring the isomer shift of ⁹⁹Ru in NiO or CoO, for example.

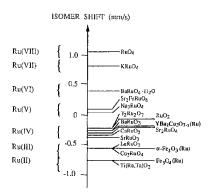


Fig. 3. Systematics of isomer shifts of ⁹⁹Ru in oxides. The data are taken from references cited in Ref. 1.

References

- Y. Ohkubo, Y. Kobayashi, K. Asai, T. Okada, and F. Amber Phys. Rev. B 47, 11954 (1993) and references cited therein.
- Y. Ohkubo, Y. Kobayashi, K. Asai, Y. Yanagida, M. Iwamoto, and F. Ambe: RIKEN Accel. Prog. Rep. 24, 67 (1990).
- Y. Ohkubo, T. Kobayashi, S. Ambe, K. Harasawa, M. Takeda, S. Shibara, K. Asai, T. Okada, and F. Ambe: Chem. Lett. 1992, p.2069.
- Y. Ohkubo, Y. Kobayashi, K. Harasawa, S. Ambe, T. Okada, K. Asai, S. Shibata, M. Takeda, and F. Ambe: Hyperfine Interact. in press.