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Excitation of isoscalar giant monopole resonance
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We consider the excitation of the isoscalar giant monopole resonances (ISGMR) excitations in 28Si, 40Ca, 58Ni, and
116Sn. We carry out self-consistent Skyrme-Hartree-Fock (HF) Random Phase Approximation (RPA) calculations of
the strength distributions S(E) and the transition densities �tr(r) as functions of the excitation energy E. Recent
experimental data of 240 MeV �-particle scattering by these nuclei is analyzed within the Distorted Wave Born
Approximation (DWBA) using the folding model (FM) with a density dependent Gaussian nucleon-� interaction
V(�;r). The parameters of V(�;r) are found by fitting the experimentally measured angular cross sections �(�) for
the case of elastic scattering, using the HF ground state density �HF. The inelastic cross sections �(�) for the ISGMR
are then obtained using the FM-DWBA and both microscopic (RPA) and hydrodynamical (collective model) �tr(r)
(found from �HF(r)). Possible overestimation of the energy weighted sum rules and shifts of the centroid energies
due to the collective-model-based DWBA reaction description are obtained.

Introduction

The study of nuclear giant resonances has long been the sub-
ject of extensive theoretical and experimental studies.1) In
this work we consider the excitation of the isoscalar giant
monopole resonance (ISGMR) in several nuclei by inelastic
scattering of 240 MeV α-particles and carry out a realistic mi-
croscopic analysis of recent and highly accurate experimental
data. Determination of the parameters describing ISGMR
excitation in both heavy and light nuclei is a topic of current
interest. The interest is stimulated mainly by the possibil-
ity of extracting the value of nuclear matter incompressibility
coefficient (which is important for studies of nuclear equation
of state, neutron stars, supernovae explosion and heavy ion
reactions2) from the knowledge of ISGMR strength distribu-
tions and centroid energies in nuclei throughout the periodic
table.3–6)

Recently, experimental studies of giant resonance excita-
tions in nuclei ranging from 12C to 208Pb were performed
at Texas A&M University using 240 MeV bombarding en-
ergy α-particles.7–10) Excellent peak-to-continuum ratios in
the observed inelastic scattering spectra were obtained and
the ambiguity associated with the continuum subtraction
was notably reduced. New conclusions regarding isoscalar
monopole strength distributions in some A < 90 nuclei have
been drawn.8,9)

On the one hand, it is interesting to compare the new ex-
perimental data with the theoretical predictions based on
self-consistent Hartree-Fock (HF) Random Phase Approxi-
mation (RPA) calculations with zero-range Skyrme-type in-
teractions. On the other hand, it is important to investigate
the consequences of some assumptions made in the experi-
mental analysis itself. In particular, it is a common practice
in experimental studies to assume the collective model ra-
dial shapes of transition densities. This assumption needs
to be carefully examined, especially for light nuclei since, as
was reported in Ref. 11, it may lead to the overestimation
of the isoscalar monopole (E0T0) energy weighted sum rule
(EWSR) by up to 30%.

The purpose of this talk is two-fold. First, we give a full
microscopic description of isoscalar monopole excitations in
28Si, 40Ca, 58Ni, and 116Sn based on self-consistent HF-RPA
calculations. We use the SL1 parametrization of the Skyrme
interaction12) which gives the value of nuclear matter incom-
pressibility of 230 MeV. Second, we give a theoretical descrip-
tion of 240 MeV α-particle scattering reactions within the
folding model Distorted Wave Born Approximation (DWBA)
and compare our HF-RPA results with the conclusions drawn
from the experimental-like analysis of cross sections. We in-
vestigate how the approximate form of the isoscalar monopole
(E0T0) transition density deduced from the collective model
may affect the results regarding the strengths and excitation
energies of E0T0 resonances.

Hartree-Fock-Random-Phase-Approximation formalism

The delta-functional coordinate dependence of the Skyrme
interaction makes it possible to give a simplified coordinate
space formulation of the RPA in terms of Green’s functions.13)

The RPA Green’s function GRPA(r, r′, E) is found from the
equation

GRPA(r, r′, E) = G0(r, r′, E)

+

Z
dr1dr2G

0(r, r1, E)

·Vph(r1, r2)G
RPA(r2, r

′, E), (1)

where G0(r, r′, E) is the Green’s function of the free system
and Vph(r1, r2) is the zero-range particle-hole interaction.

In order to be able to consider both closed-shell and open-
shell nuclei, we follow the ansatz proposed in Ref. 14 and
evaluate the free-system Green’s function from

G0(r, r′, E) =
X
p,h

θh(1− θp) ·
�
φp(r)φ

∗
h(r)φ

∗
p(r

′)φh(r
′)

E − εp + εh + iΓ/2

− φh(r)φ
∗
p(r)φ

∗
h(r

′)φp(r
′)

E + εp − εh + iΓ/2
�
, (2)
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where φk(r) and εk are the Hartree-Fock single-particle wave
functions and energies, Γ/2 is the smearing half-width,
θh and θp are the occupation numbers of the Hartree-Fock
single-particle states, and the summation over p and h states
is extended to the entire single-particle spectrum. For a
spherically symmetric nucleus, the occupation numbers can
be taken simply as θλ = Nλ/(2jλ + 1), where Nλ and jλ
are the number of nucleons on the single-particle orbital λ
and their angular momentum, respectively. The expression
for Vph(r1, r2) in terms of Skyrme-force parameters can be
found elsewhere13,15,16)

The quantities characterizing nuclear excitations can easily
be found using the RPA Green’s function. In particular, the
transition strength distribution S(E) and its energy moments

Mk for the one-body excitation operator Q =
AP

i=1

f(ri) are

obtained from

S(E) = − 1
π

Z
drdr′f∗(r)Im

h
GRPA(r, r′,E)

i
f(r′), (3)

Mk =

∞Z
0

dEEkS(E) = − 1
π

Z
dEEk

×
�Z
drdr′f∗(r)Im

h
GRPA(r, r′,E)

i
f(r′)

�
, (4)

while the transition density δρ(r, Eν) for the excited state
|ν〉 having the excitation energy Eν and the half-width Γ/2
is given by

δρ(r, Eν) = ±
�
−Γ
2
Im
�
GRPA(r, r,Eν)

�� 1
2

. (5)

A desired feature of HF-RPA calculations is preservation of
the free-system’s energy weighted sum rule. It has been
proven13,17) that such a self-consistency can be achieved if:
(1) the interaction used to perform the Hartree-Fock calcula-
tions is also used to obtain the particle-hole interaction, and
(2) all the terms obtained as a result of evaluating expression
are retained in the process of calculating the RPA Green’s
function from Eq. (1). In the present work we follow the
stated self-consistent approach.

“Microscopic” versus “Macroscopic” description of �-
scattering within the folding model DWBA

The Distorted Wave Born Approximation (DWBA) has been
widely used in experimental studies in order to give a the-
oretical description of low-energy scattering reactions and,
thus, analyze measured cross sections of scattered probes.
The folding model approach18,19) to the evaluation of opti-
cal potentials appears to be quite successful and is exten-
sively used at present in theoretical descriptions of α-particle
scattering.20–23) This approach provides a direct link to the
description of α-particle scattering reactions based on micro-
scopic HF-RPA results.

Within the folding model approach, the optical potential
U(r) is given by

U(r) =

Z
dr

′
V (| r − r

′ |, ρ0(r
′
))ρ0(r

′
) (6)

where V (| r− r
′ |, ρ0(r′)) is the nucleon-α interaction, which

is generally complex and density dependent, and ρ0(r
′
) is

the ground state (Hartree-Fock) density of a spherical tar-
get nucleus. It is customary to adopt a certain form for the
nucleon-α interaction and obtain the interaction parameters
from the fit to experimentally measured elastic angular dis-
tributions. In this work, both real and imaginary parts of the
nucleon-α interaction are chosen to have the Gaussian shape
with density dependence

V (| r− r
′ |, ρ0(r′)) = V (1 + βV ρ

2/3
0 (r′))e

− |r−r′|2
αV

+ iW (1 + βW ρ
2/3
0 (r′))e−

|r−r′|2
αW . (7)

The parameters V, βV , αV andW, βW , αW in Eq. (7) are de-
termined by a fit of the elastic scattering data. Similar form
of nucleon-α interaction was used in Ref. 22 where scattering
of 129 and 240 MeV α-particles by 58Ni was considered.

For a state with the multipolarity L and excitation energy
E, the radial form δUL(r,E) of the transition potential can
be found from

δU(r, E) =

Z
dr

′ h
V (| r − r

′ |, ρ0(r
′
))

+ ρ0(r
′
)
∂V (| r − r

′ |, ρ0(r′))
∂ρ0(r

′)
δρL(r

′
, E)

#
, (8)

where δρL(r
′
, E) is the transition density for the considered

state.

At this point, we can distinguish between the microscopic
and the macroscopic approaches to the α-particle scattering
description based on the folding model. Within the “micro-
scopic” approach, both the ground state density and the tran-
sition density which enter Eqs. (6) and (8) are obtained from
the self-consistent Hartree-Fock-RPA calculations. Within
the “macroscopic” approach, the transition densities are as-
sumed to have energy-independent radial shapes and are ob-
tained from the ground state density using the collective
model. In particular, the so-called Tassie radial shape of
the transition density 24) is used in experimental studies of
isoscalar monopole resonance excitations

δρL=0(r) = −α(E)
�
3ρ0(r) + r

dρ0(r)

dr

�
, (9)

where the energy-dependent factor α(E) is determined by
fitting measured inelastic cross sections. The amount of
isoscalar monopole strength concentrated in a given reso-
nance state can then be deduced from the knowledge of α(E)
in a straightforward manner, bearing in mind that for the
state ER that exhausts 100% of E0T0 EWSR this coefficient
is given by24)
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α2(ER) = 2π
~

2

mA〈r2〉ER
(10)

with m, A, and 〈r2〉 being the nucleon mass, the number of
nucleons in the excited nucleus, and the ground state mean-
square radius, respectively.

It is not clear that the collective model result (9) is a good
approximation for the monopole transition density, especially
in lighter nuclei. In the following, we test this approximation
by performing folding model-DWBA analysis of α-particle
scattering by several nuclei ranging from 28Si to 116Sn.

Results and discussion

The numerical solution of Eq. (1) using the SL1 parametriza-
tion of the Skyrme interaction12) is the core of our microscopic
calculations. The detailed description of analogous calcula-
tions can be found in the literature (see, for example, Refs. 13,
15 and 16). We obtain the E0T0 strength distributions from

Eq. (3) using Q00 =
1√
4π

AP
i=1

r2i which is the generally ac-

cepted form for the E0T0 excitation operator. The E0T0
transition densities are found from Eq. (5).

Our HF-RPA results for the E0T0 transition strength dis-
tributions in 28Si, 40Ca, 58Ni, and 116Sn nuclei are shown in
Fig. 1. The resonance energies and percentages of the total
E0T0 EWSR exhausted below 40 MeV excitation energy are
given in Table 1 and compared to recent experimental data.
A rather good agreement with the experiment was achieved
for 28Si and 40Ca nuclei. A significant difference between the
theoretical and experimental amounts of E0T0 EWSR exists
in 58Ni. Our microscopic results indicate that in 58Ni, as well
as in other considered nuclei, nearly 100% of E0T0 EWSR
is present below 40 MeV excitation energy in contrast with
no more than 50% reported in recent studies7,22) based on the

Fig. 1. Calculated ISGMR strength distributions in 28Si, 40Ca, 58Ni, and
116Sn nuclei.

Table 1. Resonance and centroid energies, and percentages of the EWSR
exhausted within the energy region 10 < E < 40 MeV for ISGMR ex-
citation in 28Si, 40Ca, 58Ni, and 116Sn nuclei. Comparison with recent
experimental data is provided.

cross section analysis.

At the next stage of our calculations, using Eqs. (6) and
(7) and the Hartree-Fock ground state density, we construct
the optical potential and determine the parameters of the
nucleon-α interaction of Eq. (7) by fitting experimentally
measured elastic scattering angular distributions. Numeri-
cal DWBA calculations were performed with the computer
program PTOLEMY.25) Quite satisfactory fits were obtained
with

V (| r− r
′ |, ρ0(r′)) =

−38 MeV (1− 1.9fm2ρ
2/3
0 (r′))e−

|r−r′|2
3.7fm2

+ iW (1− 1.9fm2ρ
2/3
0 (r′))e−

|r−r′|2
5.1fm2 , (11)

where:

W = −11.2 MeV for 28Si and 58Ni,

W = −10.0 MeV for 40Ca,

W = −11.4 MeV for 116Sn.

Having determined the parameters of the nucleon-α interac-
tion, we calculate the cross sections of inelastically scattered
α-particles for the case of E0T0 excitation of the target
nucleus using the transition potential (8) and the RPA tran-
sition density (5) shown in Fig. 2. These cross sections
serve as experimental data to be analyzed following the
typical procedure based on the spectrum subtraction tech-
nique.26) This procedure is illustrated in Fig. 3 for the case
of 116Sn. The middle panel of Fig. 3 shows 0◦ double dif-
ferential E0T0 cross sections obtained with RPA transition
density (i.e. our “experimental” data). In the lower panel we
show the 0◦ E0T0 cross sections found using the transition
potential (8) and the collective model E0T0 transition den-
sity (9) normalized to 100% of E0T0 EWSR (see Eq. (10)).
The dashed line in the upper panel of Fig. 3 is the ratio
of the curve in the middle panel and the one in the lower
panel. It represents the fraction of the E0T0 EWSR per
unit energy reconstructed from our “experimental” cross
sections. The solid line in the upper panel shows the actual
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Fig. 2. Microscopic RPA (solid line) and collective model (dashed line)
transition densities in 116Sn at the resonance energy E = 16.2 MeV.

Fig. 3. Reconstruction of the ISGMR EWSR from 0 degree cross sections.
Solid line: results obtained using RPA transition density. Dashed line:
results obtained using collective model transition density. See text for
a detailed explanation of the figure.

fraction of the E0T0 EWSR per unit energy as calculated
from the E0T0 transition strength distribution of Fig. 1.

The described calculations provide a direct test of approx-
imation (9). If the collective model shape (9) of the E0T0
transition density exactly reproduced the microscopic shape
deduced from Eq. (5), the solid and dashed curves in the up-
per panel of Fig. 3 would coincide. However, as follows from
our calculations, the differences between the actual (RPA)
strength distributions and those reconstructed from the cross
section spectrum are noticeable. Moreover, these differences
are not uniform which could result in differences between

the E0T0 centroid energies calculated from the actual E0T0
strength distribution and the reconstructed one. In Table 2
we display amounts of the total E0T0 EWSR exhausted by
the actual (RPA) and the reconstructed E0T0 strength distri-
butions within the considered energy interval. The compari-
son of the E0T0 centroid energies calculated from the actual
and reconstructed E0T0 strength distributions is presented in
Table 3. It can be seen that the cross section analysis based
on approximation (9) tends to overestimate the E0T0 EWSR
and the percentage of such an overestimation becomes larger
for lighter nuclei. Approximation (9) also results in the shift
of the E0T0 centroid energies, however, as follows from our
results, this error does not exceed 2%.

Table 2. Percentages of the E0T0 EWSR exhausted by the RPA strength
distribution and the one reconstructed from 0 degree cross sections fol-
lowing the procedure described in text.

Table 3. Centroid energies (in MeV) obtained from the RPA strength
distribution and the one reconstructed from 0 degree cross sections.

Conclusions

By performing self-consistent Hartree-Fock-RPA calcula-
tions, we provided a microscopic description of isoscalar
monopole excitations in several nuclei ranging from 28Si to
116Sn. Our results were compared with recent experimental
data. Good agreement with the experiment was obtained for
28Si and 40Ca. While recent studies of 240 MeV α + 58Ni
reaction were unable to locate more than 50% of the E0T0
EWSR in 58Ni, our microscopic calculations showed that al-
most the entire E0T0 strength in this nucleus is located in
the energy region E < 40 MeV.

Using the density dependent Gaussian form (7) of the
nucleon-α interaction and the folding model DWBA, we gave
a theoretical description of 240 MeV α-particle scattering by
28Si, 40Ca, 58Ni and 116Sn targets. Experimentally mea-
sured elastic angular distributions were nicely reproduced
by the parametrization of the nucleon-α interaction given in
Eq. (11).

We tested the approximation of the E0T0 transition density
by the collective model result (9). Our results, which were
obtained by following closely the typical experimental proce-
dure, showed that the analysis of E0T0 inelastic cross sec-
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tions based on the approximation (9) tends to overestimate
the E0T0 EWSR by up to 20% (which agrees with conclu-
sions of Ref. 11) and shifts the E0T0 centroid energies by
up to 2%. These conclusions may be important for further
experimental studies of E0T0 excitation, especially in light
nuclei. Possible overestimation of the E0T0 EWSR in the
experimental analysis of cross sections makes the problem of
missing monopole strength in 58Ni even worse. Further theo-
retical and experimental efforts are, thus, necessary to resolve
this problem.

This work was supported in part by the US Department of
Energy under grant # FG03-93ER40773.
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