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The Dirac-Brueckner approach to the nuclear many-body problem is described. A family of relativistic meson-
exchange potentials is used which apply the pseudovector coupling for the interaction of pseudoscalar mesons (�, �)
with nucleons. These potentials describe low-energy two-nucleon scattering and the deuteron data accurately. Using
these potentials, the properties of nuclear matter are calculated in the Dirac-Bueckner-Hartree-Fock approximation, in
which the empirical nuclear matter saturation is explained quantitatively. Size and nature of relativistic effects included
in the present approach are examined in detail. Furthermore the relativistic density-dependent Hartree approximation
is applied for finite nuclei, where the coupling constants of the relativistic Hartree-Lagrangian are made density
dependent and are obtained from the relativistic Brueckner-Hartree-Fock results of nuclear matter. The calculated
results on binding energies and root mean square radii of 16O and 40Ca agree well with experiment. The charge
densities from electron scattering are also calculated and their dependence on the nucleon-nucleon interaction is
discussed in relation with nuclear matter properties.

1. NN-interaction

In the early nineties S. Weinberg wrote three famous papers
on nuclear forces from chiral Lagrangians.1) He used the most
general possible Lagrangian involving pions and low-energy
nucleons consistent with spontaneously broken chiral symme-
try and other known symmetries. The potential between two
nucleons can be determined using Feynman diagram tech-
niques. Looking at NN-scattering with momenta lower than
Q (Q ≤ mN ) it is possible to expand the potential between
two nucleons in terms of increasing order in Q and mπ. This
famous power counting scheme guarantees that terms with
higher order in Q and/or mπ are less important for the two-
body potential.

Recently D. B. Kaplan, M. J. Savage, and M. B. Wise 2)

argued that it may be more appropriate to expand the S-
matrix and not the potential. Following their arguments we
shall also find an answer to the question: Why is there no
simple (perturbation) theory for nuclei? At a first glance it
is very amazing that nuclei cannot be understood within the
framework of a perturbation theory since single particle en-
ergies of nucleons inside a nucleus are very small compared
to the nucleon mass. The ratio is about 5%. The same is
true for single particle potentials. Now let us sketch their ap-
proach for NN scattering since it leads us naturally to ladder
diagrams.

For s-waves the scattering amplitude A is related to the phase
shift δ by

A =
4π

M

1

p cos δ − ip
, (1)

where M is the nucleon mass and p the magnitude of the
3-momentum of each nucleon in the center of mass frame.

It is well-known from elementary quantum mechanics that
the quantity p cot δ and not A has a nice momentum expan-
sion for p ≤ Λ(∼M).

p cot δ = −1

a
+

1

2
Λ2r0

p2

Λ2
+ ..., (2)

where a is the scattering length and r0 is the effective range.
The expression in Eq. (2) is the so-called effective range ex-
pansion. If the low-energy parameters are of natural size
(|a| ∼ 1

Λ
and |r0| ∼ 1

Λ
), then there is a simple momentum

expansion of the scattering amplitude:

A = −4πa

M
(1− iap+ (ar0/2− a2)p2 + ...). (3)

This amplitude is a power series in the momentum p and
consecutive terms are getting smaller

A =
∞X

n=0

An and An ∼ O(pn). (4)

The situation is different for NN scattering since the scatter-
ing length is very large (∼23 fm). In this case the expansion
has to be done in a different way:

A = −4π

M

1

(1/a+ ip)
(1 +

r0/2

1/a+ ip
+ ...). (5)

1/a is a small quantity. Therefore the leading order term is
proportional to p−1:

A =
∞X

n=−1

An and An ∼ O(pn). (6)

In the following we show how to treat this nontrivial case
in the framework of field theory. An effective field theory of
interacting nucleons has been formulated in the above men-
tioned papers by Weinberg:

Leff = N+(i∂t +∇2/2M)N

+ [C0(N
+N)2 + C2[(NN)+(N

↔
∇

2

N) + h.c.] + ...]. (7)

The first and the second term in the second line of this La-
grangian corresponds to the left and right term of Fig. 1,
respectively.

Using an appropriate regularization scheme (the so-called
power divergence subtraction of Kaplan, Savage and Wise2))
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Fig. 1. Interaction terms of the Lagrangian.

the amplitude of Eq. (7) can be calculated term by term. In
Fig. 2 the Feynman diagrams of the lowest order terms are
displayed. In the next step pions have to be included. Of
course Weinberg included pions in his papers. At this point
we would like to make contact to our own work.3) We started
from an effective chiral πN-Lagrangian up to order q0 and q1

and worked out the corresponding NN-potential. Only the
first diagram of Fig. 3 leads to the one-pion-exchange while
the one-loop corrections only contribute to mass and coupling
constant renormalization.

Fig. 2. Lowest order terms of the NN-scattering amplitude Eq. (5) using
the Lagrangian Eq. (7).

Fig. 3. Lowest order diagrams which contribute to the one-pion-
exchange.

Then we worked out the two-pion-exchange diagrams of Fig. 4
and diagrams which involve ∆-degrees of freedom. Let us
summarize our results:
(1) Phase shifts up to 350MeV laboratory energy are repro-
duced for L ≥ 3.
(2) The strength of the empirical central potential is repro-
duced!
(3) The empirical spin-orbit potential is reproduced for r ≥
1 fm!

Fig. 4. Two-pion-exchange diagrams contributing to the NN-force.

This looks very promising. A difficult and important part
for the future will be to combine the short-range part of
the NN-interaction (Eq. (7)) with the long-range one-pion-
exchange and the intermediate two-pion-exchange within a
rigorous field theoretic treatment including Weinberg’s power
counting and dimensional regularization of ultra-violet diver-
gences!

Furthermore we learned from this introduction that we need
to iterate the short-range part of the NN-interaction to all
orders (see Fig. 2) to obtain the unusual large scattering
length. The corresponding procedure for OBEPs (One-
Boson-Exchange Potentials) is the ladder approximation
which will be solved using the Thompson or Blankenbecler-
Sugar equation.

2. The Dirac-Brueckner approach

The essential point of the Dirac-Brueckner approach is to use
the Dirac equation for the single-particle motion in nuclear
matter

(
p−M − U)ũ(p, s) = 0, (8)

or in Hamiltonian form

(� · p+ βM + βU)ũ(p, s) = εpũ(p, s), (9)

with

U = US + γ0UV , (10)

where US is an attractive scalar and UV (the time-like com-
ponent of) a repulsive vector field. (Notation as in the book
of Bjorken and Drell;4) β = γ0, αl = γ0γl.) M is the mass of
the free nucleon.

The fields, US and UV , are in the order of several hundred
MeV and strongly density dependent. In nuclear matter they
can be determined self-consistently. The resulting fields are
in close agreement with those obtained in the Dirac phe-
nomenology of scattering.

The solution of Eq. (8) is

ũ(p, s) =

s
Ẽp + M̃

2M̃

 
1

� � p

Ẽp+M̃

!
χs, (11)

with

M̃ =M + US , (12)

Ẽp =

q
M̃2 + p2, (13)

and χs a Pauli spinor. The covariant normalization is
¯̃u(p, s)ũ(p, s) = 1. Notice that the Dirac spinor Eq. (11)
is obtained from the free Dirac spinor by replacing M by M̃ .

As in conventional Brueckner theory, the basic quantity in
the Dirac-Brueckner approach is a G-matrix, which satisfies
an integral equation. In this relativistic approach, a relativis-
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tic three-dimensional equation is chosen. Following the basic
philosophy of traditional Brueckner theory, this equation is
applied to nuclear matter in strict analogy to free scattering.

Including the necessary medium effects, the Thompson equa-
tion in the nuclear matter rest frame reads

G̃(q′,q|P, z̃) = Ṽ (q′,q)

+

Z
d3k

(2π)3
Ṽ (q′,k)

M̃2

Ẽ2
1
2P+k

Q(k,P)

z̃ − 2Ẽ 1
2P+k

G̃(k,q|P, z̃), (14)

with

z̃ = 2Ẽ 1
2P+q. (15)

P is the c.m. momentum, and q,k and q′ are the initial,
intermediate and final relative momenta, respectively, of the
two particles interacting in nuclear matter. The Pauli op-
erator Q projects onto unoccupied states. In Eq. (14) we
suppressed the kF dependence as well as spin (helicity) and
isospin indices. For | 1

2
P± q| and | 1

2
P± k| the angle average

is used.

The energy per nucleon in nuclear matter, which is the objec-
tive of these calculations, is considered in the nuclear matter
rest frame. Thus, the G-matrix is needed for the nuclear
matter rest frame. Equation (14) gives this nuclear matter
G-matrix directly in that rest frame. Alternatively, one can
calculate the G-matrix first in the two-nucleon center-of-mass
(c.m.) system (as customary in calculations of the T -matrix
in two-nucleon scattering), and then perform a Lorentz trans-
formation to the rest frame. This method5) is, however, com-
plicated, involved, and cumbersome. The advantage of our
procedure is that it avoids this complication. Further treat-
ments of Eq. (14) can follow the lines established from con-
ventional Brueckner theory, as e. g. the use of the angle av-
eraged Pauli projector etc.. Numerically the equation can be
solved by standard methods of momentum space Brueckner
calculations.6)

The essential difference to standard Brueckner theory is the
use of the potential Ṽ in Eq. (14). Indicated by the tilde, this
meson-theoretic potential is evaluated by using the spinors
of Eq. (11) instead of the free spinors applied in scattering
as well as in conventional (‘non-relativistic’) Brueckner the-
ory. Since US (and M̃) are strongly density dependent, so
is the potential Ṽ . M̃ decreases with density. The essential
effect in nuclear matter is a suppression of the (attractive)
σ-exchange; this suppression increases with density, provid-
ing additional saturation. It turns out (see figures below)
that this effect is so strongly density-dependent that the em-
pirical saturation and incompressibility can be reproduced.
Furthermore, the prediction for the Landau parameter f0 is
considerably improved without deteriorating the other pa-
rameters. Note, that sum rules require f0 > −1 at nuclear
matter density.7)

The single-particle potential

U(m) =
M̃

Ẽm

〈m|U |m〉 = M̃

Ẽm

〈m|US + γ0UV |m〉

=
M̃

Ẽm

US + UV , (16)

is the self-energy of the nucleon which is defined in terms of
the G-matrix formally in the usual way

U(m) = Re
X

n≤kF

M̃2

ẼnẼm

〈mn|G̃(z̃)|mn− nm〉, (17)

where m denotes a state below or above the Fermi surface
(continuous choice). The constants US and UV are deter-
mined from Eqs. (16) and (17). Note that Eq. (10) is an
approximation, since the scalar and vector fields are in gen-
eral momentum dependent.

The energy per nucleon in nuclear matter is

E
A

=
1

A

X
m≤kF

M̃

Ẽm

〈m|
 · pm +M |m〉

+
1

2A

X
m,n≤kF

M̃2

ẼmẼn

〈mn|G̃(z̃)|mn− nm〉 −M. (18)

In Eqs. (17) and (18) we use

z̃ = Ẽm + Ẽn. (19)

The expression for the energy, Eq. (18), is denoted by the
Dirac-Brueckner-Hartree-Fock (DBHF) approximation. If M̃
is replaced by M , we will speak of the Brueckner-Hartree-
Fock (BHF) approximation, since this case, qualitatively and
quantitatively, corresponds to conventional non-relativistic
Brueckner theory. Thus, we will occasionally denote the
DBHF calculation by ‘relativistic’ and the BHF calculation
by ‘non-relativistic’ (though, strictly speaking, all our calcu-
lations are relativistic).

In Eqs. (16)–(18) the states |m〉 and |n〉 are represented by
Dirac spinors of the kind Eq. (11) and an appropriate isospin
wavefunction, 〈m| and 〈n| are the adjoint Dirac spinors

¯̃u = ũ†γ0 with ¯̃uũ = 1; Ẽm ≡
q
M̃2 + p2

m. The states of
the nucleons in nuclear matter, w, are to be normalized by

w†w = 1. This is achieved by defining w ≡
q
M̃/Ẽ× ũ which

explains factors of M̃/Ẽ in Eqs. (16)–(18).

The first term on the r.h.s. of Eq. (18)—the ‘kinetic energy’—
is in more explicit form

1

A

X
m≤kF

MM̃ + p2
m

Ẽm

. (20)

The single particle energy is

εm =
M̃

Ẽm

〈m|
 · pm +M |m〉+ U(m) (21)

= Ẽm + UV (22)

= Ẽm − M̃ +M + U0. (23)
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3. Results for nuclear matter

We apply now three different OBE potentials to nuclear mat-
ter. Our potentials use for πNN the coupling of derivative
(pseudovector) type. This is important because the pseu-
doscalar πNN coupling leads to an unrealistically large at-
tractive medium effect.8)

The main difference between the three potentials applied
here, is the strength of the tensor force as reflected in the
predicted D-state probability of the deuteron, PD. With
PD = 4.5%, Potential A has the weakest tensor force. Po-
tential B and C predict 5.1% and 5.5%, respectively. It is
well-known8) that the strength of the tensor force determines
the location of the nuclear matter saturation point on the Co-
ester band.9) To find out the structure of the Coester band,
predictions from more than one potential are needed.

All results presented in this section are obtained either in
the Bruckner-Hartree-Fock (BHF) or the Dirac-Brueckner-
Hartree-Fock (DBHF) approximation; as mentioned before,
occasionally, we will denote these two methods also as the
‘non-relativistic’ and the ‘relativistic’ calculation, respec-
tively.

The repulsive relativistic effect in nuclear matter as created
by the DBHF method is shown in Fig. 5.

Fig. 5. The repulsive relativistic effect in nuclear matter as obtained in a
Dirac-Brueckner-Hartree-Fock calculation using the OBEP-Potential
B.10) Saturation points from conventional calculations are displayed
in the background.10) The checked rectangle represents the empirical
value for nuclear matter saturation.

As mentioned in Sect. 2, the suppression of the σ contribu-
tion can be understood in simple terms by considering the
covariant one-σ-exchange amplitude, for q′ = q and λi = λ′

i

(as used in the Hartree approximation), in which case, due to
the covariant normalization of the Dirac spinors, the numer-
ator becomes 1. Since the physical states of the nucleons in
nuclear matter, w, are to be normalized by w†w = 1 imply-

ing w ≡
q
M̃/Ẽ × ũ, the sigma (as any other) contribution

gets the (scalar density) factor (M̃/Ẽ)2 (see second term on
the r.h.s. of Eq. (18)) which decreases with decreasing M̃
(i. e. increasing density). A corresponding consideration for
the time-like (γ0) component of ω-exchange would lead to no
changes for that contribution. However, due to the exchange
term and correlations there is a small enhancement of the
repulsion created by the ω with density.

It can be shown that the relativistic effect on the energy
per nucleon, ∆(E/A)rel (i. e. the difference between the rela-
tivistic and non-relativistic calculation), is well fitted by the
ansatz

∆(E/A)rel ≈ 2MeV× (ρ/ρ0)
8/3, (24)

which is suggested by an estimate by Keister and Wiringa.11)

Furthermore, we could show that up to nuclear matter den-
sity the wound integral κ is slightly smaller for the relativis-
tic approach than for the non-relativistic one. κ can be un-
derstood as the expansion parameter for the hole-line series.
This implies that in this region the relativistic many-body
scheme should be slightly better convergent. Beyond nuclear
matter density, the situation is reversed. (For the definition
of κ and for explicit formulae appropriate for the momentum-
space framework, see section 5 of Ref. 6. In addition, it is
amusing to note that for all values of kF the ratio M̃/M is
almost the same for the non-relativistic and the relativistic
approach. Low values for M̃/M have often been critizised.
However, they are not a consequence of the relativistic ap-
proach but are due to the Brueckner-Hartree-Fock approxi-
mation. Higher order corrections will enhance this quantity.

The representation of nucleons by Dirac spinors with an
effective mass, M̃ , can be interpreted, as taking virtual
nucleon-antinucleon excitations in the many-body environ-
ment (many-body Z-graphs) effectively into account.12) This
can be made plausible by expanding the spinors Eq. (11) in
terms of (a complete set of) spinor solutions of the free Dirac
equation which will necessarily also include solutions repre-
senting negative energy (antiparticle) states.

Now let us compare the contributions in various partial-wave
states as obtained in a relativistic calculation to that from
the corresponding non-relativistic one. Detailed investiga-
tions have shown that the repulsive relativistic effect for the
P -wave contributions is essentially due to σ suppression to-
gether with a signature of spin-orbit force enhancement. The
change of the 1S0 contribution is so small, because of a can-
celation of effects due to σ and ρ. Apart from σ reduction,
the repulsive effect in 3S1 is due to a suppression of the twice
iterated one-pion exchange for reasons quite analogous to the
sigma suppression.

A comparison between relativistic and non-relativistic
Brueckner-Hartree-Fock calculations for all three potentials
is shown in Fig. 6. For the non- relativistic approach, the
three saturation points are clearly on the Coester band. How-
ever, using the relativistic method, the saturation points are
located on a new band which is shifted towards lower Fermi
momenta (densities) and even meets the empirical area.
This is a very desirable effect. The reason for this shift of the
Coester band is the additional strongly density dependent re-

6



Fig. 6. Results from calculations with a family of relativistic potentials
revealing a new Coester band which meets the empirical area; 10)

solid lines: relativistic, dashed lines: non-relativistic calculations. For
comparison, saturation points from conventional calculations are dis-
played in the background.10) The shaded square denotes the empirical
value for nuclear matter saturation.

pulsion which the relativistic approach gives rise to. In the
relativistic case, the incompressibility of nuclear matter using
Potential B is about 250MeV which is in satisfactory agree-
ment with the empirical value of 210± 30MeV.13) Note that
in the relativistic Walecka model, 540MeV is obtained for
the compression modulus.14)

Based on the nuclear matter G-matrix, the effective particle-
hole interaction at the Fermi surface is calculated and, mul-
tiplied by the density of states kFM/(~2π2), parameterized
by: F = f + f ′τ1 · τ2 + gσ1 · σ2 + g′σ1 · σ2τ1 · τ2. From an ex-
pansion of the parameters in terms of Legendre polynomials,
Pl, we determine the coefficient for l = 0. It turned out that
the prediction for the Landau parameter f0 is considerably
improved in the relativistic calculation without deteriorating
the other parameters. Sum rules require f0 > −1 at nuclear
matter density.7)

Concerning nuclear matter at higher densities and neutron
matter, we like to refer the interested reader to the following
Ref. 15.

4. Finite nuclei

Encouraged by the good results for nuclear matter, one may
now try to describe finite nuclei starting from the free-space
nucleon-nucleon interaction. A straightforward way would be
to solve the relativistic Brueckner-Hartree-Fock equations for
finite systems. This is, however, an extremely difficult task.
Therefore, it might be a reasonable next step to incorporate
the DBHF results in a relativistic Hartree framework where
the coupling constants are made density dependent so as to
reproduce the nuclear matter results.16) This relativistic den-
sity dependent Hartree (RDDH) approach is similar in spirit
to the work by Negele in the nonrelativistic approach.17)

The working basis of the RDDH approach for finite nuclei
is the relativistic Hartree Lagrangian18) (sigma-omega model
Lagrangian of Walecka).19) Writing explicitly the density de-
pendence of the coupling constants, we have

LRDDH = ψ̄ (iγµ∂
µ −M − gσ(ρ)σ − gω(ρ)γµω

µ)ψ

+
1

2
(∂µσ)2 − 1

2
m2

σσ
2 − 1

4
(∂µων − ∂νωµ)

2 +
1

2
m2

ωω
2
µ,

(25)

in conventional notation.4) In Hartree approximation (mean
field approximation), the nucleon self-energy in nuclear mat-
ter is given by

ΣRDDH(ρ) = Us(ρ) + Uv(ρ)γ0. (26)

Here, the scalar and the vector potentials are expressed in
terms of the coupling constants gσ(ρ) and gω(ρ) through

Us(ρ) = −gσ
2(ρ)

m2
σ

ρs,

Uv(ρ) =
gω

2(ρ)

m2
ω

ρv, (27)

where ρs and ρv are the scalar and the vector densities, re-
spectively:

ρs = < ψ̄ψ > = 4

kFZ
0

d3k

(2π)3
M∗

E∗ ,

ρv = < ψ̄γ0ψ > = 4

kFZ
0

d3k

(2π)3
. (28)

The scalar potential is related to the effective mass by M∗ =
M + Us(ρ). The connection of the RDDH approach to the
DBHF theory is made through the nucleon self-energy in nu-
clear matter, Eq. (26). In fact, one can express the DBHF
self-energy in nuclear matter in this form20) using the sym-
metry requirements and redefinition of various terms through
the use of the Dirac equation. The density dependent cou-
pling constants are then obtained through Eqs. (27) and (28),
where Us(ρ) and Uv(ρ) are the results of the DBHF calcula-
tions of nuclear matter.

We write the equations of motion for finite nuclei for com-
pleteness. The normal modes of the nucleon are calculated
with the Dirac equation,

(−i� � r+ βM∗(r) + V (r))ψi(r) = Eiψi(r), (29)

with M∗(r) = M + gσ(r)σ(r) and V(r) = gω(r)ω
0(r) +

e 1−τ3
2
A0(r).

The Klein-Gordon equations for σ, ω0, and A0 are

�
−�+m2

σ

�
σ(r) = −gσ(r)ρs(r),�

−�+m2
ω

�
ω0(r) = gω(r)ρv(r),

−�A0(r) = eρp(r), (30)

where ρs, ρv and ρp are the scalar, vector and proton den-
sities, respectively, which are obtained through the Dirac
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wavefunctions. We solve the coupled differential equations
self-consistently. The center of mass corrections are applied
in the same way as in Ref. 21.

In Fig. 7, the vector and the scalar potentials, Uv and Us

are depicted as a function of kF . At normal matter density,
kF = 1.35 fm−1, Uv = 274.7MeV and Us = −355.7MeV.
As a comparison, the vector and scalar mean-field potentials
are shown using constant (density independent) couplings;
i.e. the scalar and vector potential parameters are the ones
of Potential A. This comparison clearly indicates that one
needs density dependent coupling constants in order to repro-
duce the nuclear matter results within the relativistic Hartree
framework.

Fig. 7. Vector and scalar potentials for relativistic density dependent
Hartree (full lines) and relativistic Hartree only (dashed lines) as a
function of kF.

Now we fit the coupling constants gσ(ρ) and gω(ρ) to the self-
energies Us and Uv with the choice that mσ and mω are the
masses in Potential A as a standard choice; mσ = 550MeV
and mω = 782.6MeV. As can be seen from Eq. (27), the rel-
evant quantities are g2

σ and g2
ω. At kF = 0.8, 1.1, 1.5 we ob-

tain g2
σ/4π = 12.3, 8.91, 6.23 and g2

ω/4π = 18.63, 13.48, 9.06,
respectively. This shows that the coupling constants at the
surface are more than 40% bigger than in the interior. At nu-
clear matter density (kF = 1.35 fm−1) the coupling constants
are not modified as one can see from Fig. 7. But at smaller
densities both coupling constants are growing. We note here
that Us and Uv are, in principle, dependent not only on the
density but also on the momentum of the nucleon.

We calculate 16O and 40Ca as examples for finite nuclei within
the RDDH approach. The calculated results on the binding
energies, single particle energies and charge radii (using the
Bonn A potential) are tabulated in Table 1. For comparison,
results of nonrelativistic Brueckner-Hartree-Fock calculations
for 16O with the same potential (Bonn A) are shown in the
column N-BHF. It is interesting to find that the RDDH re-
sults are very close to experiment. The improvements, as
compared to N-BHF, are remarkable. The root mean square
charge radius is almost perfect, while the binding energy is
slightly smaller than experiment. If we compare relativis-
tic and nonrelativistic results, we find that the radius of the

Table 1. The binding energy per nucleon, root-mean-square charge ra-
dius and single particle energies are displayed for the relativistic density
dependent Hartree(RDDH) approach, the nonrelativistic Brueckner-
Hartree-Fock(N-BHF) method and experiment, respectively. The
Bonn A potential is used. The upper part of the table is for 16O
and the lower one for 40Ca.

16O RDDH N–BHF Experiment

BE/A [MeV] −7.5 −5.95 −7.98

rc [fm] 2.66 2.31 2.70 ± 0.05

ε(1s1/2) [MeV] −43.5 −56.6 −40 ± 8

ε(1p3/2) [MeV] −21.8 −25.7 −18.4

ε(1p1/2) [MeV] −16.5 −17.4 −12.1

40Ca RDDH N–BHF Experiment

BE/A [MeV] −8.0 −8.29 −8.5

rc [fm] 3.36 2.64 3.5

ε(1s1/2) [MeV] −53.3 – −50 ± 8

ε(1p3/2) [MeV] −36.0 – −34 ± 5

ε(1p1/2) [MeV] −32.5 – −34 ± 5

ε(1d5/2) [MeV] −19.3 −30.2 −14 ± 2

ε(2s1/2) [MeV] −14.3 −24.5 −10 ± 1

ε(1d3/2) [MeV] −13.6 −16.5 −7 ± 1

relativistic calculation is larger. This is natural since, e.g., the
lower component of the relativistic 1p3/2-wavefunction looks
like a nonrelativistic 1d3/2-wavefunction. This shifts part of
the density to the surface and leads to a larger radius in the
relativistic case. This has also consequences for the binding
energy per nucleon. Using the Bethe-Weizsaecker mass for-
mula, we can estimate that surface and Coulomb effects lead
to 2 to 3MeV less repulsion for the relativistic calculation
since the radius is larger. Although the volume effect is 1
to 2MeV more repulsive in the relativistic case which has
been determined in nuclear matter in Ref. 10, the relativis-
tic description of finite nuclei yields altogether more binding
energy per nucleon. This shows that relativistic effects lead
off the Coester band, which exists for finite nuclei, too.

In Fig. 8, we show a comparison with experimental charge
density distributions obtained from elastic electron scat-
tering. 21) The RDDH results with the Bonn A potential
(dash-dotted curve) compare fairly well with the experimen-
tal data. Looking more closely, the central density comes out
to be higher than experiment and the density falls off slightly
faster than experiment. This observation of the density and
the slightly smaller binding discussed above, seems to be the
reflection of the equation of state of nuclear matter as shown
in Fig. 6. In fact, when we take the DBHF results from the
Bonn C potential, whose saturation density is almost perfect
but the saturation energy is about 4MeV above the exper-
imental value, the charge density distributions are found to
be very good as can be seen in Fig. 8 (dashed curve). In
this case, however, the binding energies of finite nuclei are
found to be too small; i.e. E/A = −5.9MeV for 16O and
E/A = −6.0MeV for 40Ca.
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Fig. 8. Comparison of the densities in relativistic density dependent
Hartree and experiment for 16O and 40Ca, respectively. The results
with the Bonn A potential are shown by the dash-dotted curve, while
the corresponding ones for Bonn C are depicted by the dashed one.
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