塩基性炭酸カルシウムを利用した高付加価値製品の開発第3報 - BCCの大量生産と漆喰としての環境機能性について-

佐藤 壱・谷口秀樹 工業化学部

Development of advanced material using Basic Calcium Carbonate Carbonation of Basic Calucium Carbonate under various conditions

Atsushi SATO · Hideki TANIGUCHI

Industrial Chemical Division

要 旨

本研究では塩基性炭酸カルシウム(BCCと言う)合成時の導電率と炭酸化率,形状について詳細に調べた.最終的 にBCCが生成する場合は,反応初期から消石BCCが構成されていることが分かった.また企業に委託事業で量産し たBCCで漆喰壁を作成し,調湿性(細孔分布等)を測定した.

1. はじめに

漆喰等の壁材として発展してきた石灰産業は江戸期に は肥料用,明治以降には鉄鋼,セメントに利用されるよ うになり平成2年には生産量100万トンを越えるピー ク時を迎えた.しかし鉄鋼,セメント産業の技術革新に よる使用量の減少,単価ダウンの現状にあり,じり貧の 様相を呈している.

一方塩基性炭酸カルシウム(Basic Calcium Carbonate, 20aO3・Ca(OH)2・ 1.5H20,以下BCCと言う)は石灰乳の炭酸化反応生成物 として,CaCO3とCa(OH)2及びH2Oの複塩として生 成することが古くからが推測されていた.BCCの合成 はBCCからCaCO3への炭酸化条件を変化させること により,形状制御が可能になり,CaCO3の形態制御す る中間体の一つとして,近年注目されている.しかしB CCは水の存在下や加熱によってCaCO3とCa(OH)2 に分解し結晶構造や形態が変化する.また石灰乳のBC Cの合成は条件によって厳しく制限される.(BCCを 中間体としたCaCO3は形態制御が簡単で特定の形態及 び大きさのCaCO3を合成できる.)

大分県では上質の石灰を大量に産出しており,県南地 方の重要な産業である.前記の閉塞感を「現状打破」す るためには,石灰固有の機能に,新しい視点から系統だ った研究開発,製品開発を実施する事が必要不可欠であ る.この問題を解決するため,石灰石を利用した高付加 価値製品の開発が急務である.本研究ではBCCの炭 酸化による構造及び形状の変化について報告する.

2. 実験方法

2.1 BCCの合成時の導電率と炭酸化率

津久見産石灰石粒径30~20mmを電気炉で950 ,6時間 焼成後炉内で自然冷却し原料生石灰(CaO)とした.この CaO20gを60 の温水400mlに攪拌しながら投入し10分間 水和させ、150メッシュのふるいを通過し5%に濃度調整 した石灰乳を得た.石灰乳400gを15.0 に冷却し,攪 拌速度を1500RPM,20(vol%)CO2を1000ml/min導入し, BCCを合成した.反応中溶液の導電率、および生成物 をフェノールフタレイン、メチルオレンジを指示薬とし た滴定法により求めた炭酸化率の変化をFig.2に示す。 .また比較のため蒸留水にCO2を導入したときの導電 率の変化を求めたが、変化は見られなかった.

Fig.1 炭酸化装置

導電率一炭酸化率

Fig.2 BCCの合成時の導電率と炭酸化率

導電率は5秒おきに測定した.蒸留水に炭酸ガスを導入 しても導電率は変化しないことが分かった.導電率はC a(OH)₂が溶解しイオンの発生に由来してる.炭酸化速 度は炭酸化開始からA時点までは遅く,その後炭酸化終 了までほぼ直線的に上昇しているがことが分かった.

1.2 BCC合成時のX線回折装置による構造解析 測定方法は粉末法で行った.装置はフィリップス製(X 'Pert),測定条件は管球銅50KV×40mA.定角度2 (10 ~50度),Step size 0.05,Time per step 1.5, Rece iving slit 0.15mm,測定試料面10×10mm一定で測定し た. (Fig.3)

 Fig.3
 BCC合成時のX線回折パターン

 A時点ですでにBCCが生成している.炭酸化開始か

らCまではBCCが生成しCalcite(CaCO₃)は生成しなか った

D時点ですべてがBCCにとなりPortlandite(Ca(0H)₂) がなくなり導電率が低下した.D時点直後導電率が最下 点以降はBCCがCalcite(CaCO₃)に炭酸化された.D時 点以降Portlandite(Ca(0H)₂)が検出されていないことか らBCCは分解反応はしていないことが分かった.

DまではBCCがCalcite(CaCO₃)に炭酸化されなかっ たが導電率が最下点以降はCalcite(CaCO₃)に炭酸化され た.Portlandite(Ca(OH)₂)が存在しているとBCCは炭 酸化しないことが分かった.

2.3 BCCの合成時の生成物の形状

A時点からBCCが確認されるが,Fig.4はB時点のS EM写真である.BCCは6角板状である.Fig.4で板状 をしているのがBCCで不定形の固まりはPortlandite(Ca(0H)₂)で,炭酸化率は12%であった.写真では板状が 多く観察観察された.

Fig.5はD時点のSEM写真である.

炭酸化率は52%であった.BCCの理論的炭酸化率は66%ある.Fig.6の結果からD時点の生成物はBCCのみであったが,粒子の内部まで完全にBCCのに生成されていないのではないかと思われる.形状では全てがBCCと思われる.

Fig.4 B時点の生成物のSEM写真

Fig.5 D時点の生成物のSEM写真

下記の写真はE時点のSEM像である.炭酸化率は60%であった.立方体の形状しているのがCaCO₃である.BCCは板状である.(Fig.6)

Fig.6 E時点の生成物のSEM写真

E時点から炭酸化を進め導電率が低下し,pHが9以下 に低下した点がH時点である.炭酸化率は100%であっ た.BCCを水中で炭酸化率100%まで炭酸化すると, 5μ程度の立方体が生成する事が分かった.(Fig.7)

Fig.7 H時点の生成物のSEM写真

2.3 BCC漆喰壁の作成と評価

2.3.1 BCCの大量生産

BCCを大量に合成するため,(有)ニューライム研 究社に委託し約25Kgを製造した.当センターでの合成 条件ではBCCは合成されなかった.(有)ニューライム研究 社装置で最適条件を求めて製造した.製造条件は下記のと おりである.

消石灰の作成方法

CaO 14Kgに水 (18)116Kgを加え激しく攪拌する. 150メッシュのフルイで濾過し,石灰乳濃度を5(W/V%)に 調整する. 炭酸化 容器の容量 120以 炭酸化開始温度 15 , 炭酸ガス濃度 21vol% 炭酸ガスガス吹込量 120以 / min, 攪拌 4枚羽根450rpm,反応時間 45~50min 乾燥粉砕 遠心分離機 5min ,真空乾燥 100 5hr,

粉砕バンタムミルで粉砕.

Fig.8 委託製造したBCCのSEM写真

委託生産したBCCの形状は当センターで合成した物

に比べ結晶進行した板状で非常に大きい.厚さ0.3µm 面方向の大きさは1~3µm程度であった.

Fig.9 委託製造したBCCのX線回折パターン

Fig.9のX線回折パターンで炭酸カルシウムが検出された.これは製造工程でBCC合成後脱水までの間に一部が炭酸化したからである.

2.3.2 BCC漆喰の壁の作成

漆喰壁の評価のため,漆喰を製造販売及び施工をして いる(有)丸京石灰工業にBCC漆喰の施工を委託した .施工性,や保水性等を評価してもらった.BCCにス サ(麻)とのり材加え調合し,40cm四方の試験片を作成 した.下地にはガラス,珪酸カルシウム板,石膏ボード を用いた.下記の写真(Fig.10)にBCC漆喰の作成風景 を示す.

Fig.10 施工風景

BCC漆喰は市販品と比較し,非常に施工がしやすい が100%ではクラックが発生する.そこでBCC100部に 対し20部,40部,60部,80部及び100部消石灰を添加するこ とで,クラックの発生を防止することが出来た.

2.3.3 BCC漆喰の形状評価

SEM写真(Fig.11)は施工後120日経過した市販の 漆喰の表面の状態である.なめらかで大きな凹凸がある

Fig.11 市販の漆喰の表面のSEM写真

BCCのみの漆喰は大きなひび割れが激しく,表面は 小さな粒子で覆われていた.表面形状を(Fig.12)に示す .漆喰材料としては利用できない.

Fig.12 BCC漆喰の表面のSEM写真

Fig.13 BCC100gに消石灰20gの漆喰の表面写真

BCC100gに消石灰20gを加えプラスターボードに施 工した.120日経過後の表面形状は下記のとおりであっ た(Fig.13).

Fig.14はBCC100g消石灰40gを加えプラスターボードに施工した.120日経過後の表面形状は下記のとおり

であった

Fig.14 BCC100g消石灰40gの漆喰の表面写真

BCC100g消石灰80gを加えプラスターボードに施工 し120日経過後の形状は下記のとおりであった(Fig.15)

Fig.15 BCC100g消石灰80gの漆喰の表面写真

BCC100g消石灰100gを加えプラスターボードに施工し 120日経過後の形状は下記のとおりであった(Fig.16).

Fig.16 BCC100g消石灰100gの漆喰の表面写真

消石灰の添加量によって表面状態はが変化することが

わかった.

消石灰を20g加えた漆喰の表面形状は針状が絡みあい 硬化しいいた.

消石灰を40g加えた漆喰の表面形状はBCCを消石灰が包む様に小さな凹凸に見えた.

消石灰を80g加えた漆喰の表面形状は紡錘状が接着した状態に見えた.

消石灰を100g加えた漆喰の表面形状は大きな不定形物 質に小さな粒子が,付着した状態に見えた.

市販品と比較して,消石灰を加えた漆喰は壁表面の凹 凸が多く空気との接触面積が広く感じた.(有)丸京石 灰工業職員の評価によると「鏝滑り性」が非常によく, 熟練した技能を持ってなくても,漆喰の施工が可能であ るとの評価を得た.また「スサ,のり等」の添加量を検 討すれば,施工性の良い漆喰材料が期待出来るとの評価 を得た.

 → 録滑り性を客観的な評価をするためにJIS A-1205 「

 土の塑性限界試験」を行ったがスサの存在や乾燥中消石
 灰の炭酸化で水分測定ができず,評価ができなかった。

 2.3.4 BCC漆喰の窒素吸着法による細孔分布測定

窒素吸着法による吸着等温線分類と細孔分布の関係 は下記のFig.15のおよびFig.16の関係がある.

Fig.17 吸着等温線

吸有寺温線のハターノは上記り裡に分類される	•
上記各パターンの細孔分布は(Table.1)の通りて	゙゙ある

able.1 吸看寺温線八ターンと細扎分布				
型	細孔分布	個体表面	主材料	
	microporus	不均一	活性炭・ゼオライト	
	nonporus	不均一	磁性体・シリカ	
	nonporus	吸着力弱	トナー・高分子	
	mesoporus	不均一	アルミナ・シリカ	
	mesoporus	吸着力弱		
	nonporus	均一	グラファイト	

漆喰施工後30日後に窒素吸着法による細孔分布測 定を行った.吸着等温線(脱着)のパターンは下図の 通り(Fig.18)であった.

上記吸着等温線はFig.16の のパターンで, nonporus に該当する.市販品および消石灰を加えた漆喰の壁は施 工後30日では調湿機能を持つ細孔(mesopor)がないこ とがわかった.漆喰炭酸化した後の細孔(mesopor)の測 定をし,漆喰の機能性を調べなければならない.

3.終わりに

BCC漆喰は消石灰を加えることにより,市販の漆喰 より作業性の向上ができた.施工後30日では調湿機能 を持つ細孔は市販品と同様で向上していなかった.今後 経時変化の調べる必要がある.120日後の表面形状は 消石灰の添加量で制御が可能となった.

市販品よりも多孔質で調湿の優れた, B C C 漆喰は B C C の添加する消石灰やのり, すさ等の量を検討することで可能と思われる.

4.謝辞

本研究の遂行にあたり,貴重なご助言を頂きました 産業技術総合研究所 産学官連携部門 研究コーディ ネーター芝崎靖雄,産業技術総合研究所 中部センタ

セラミックス研究部門 リーダー室鈴木憲司,大分大 学応用化学科西口宏泰助手,大分高等専門学校土木工 学科一宮一夫助教授には心より感謝の意を表します.

また本研究に協力していただいた,(有)丸京石灰工業,(共)ニューライム研究社に感謝の意を表します.