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The spin structure of the proton
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It is shown that the proton “spin crisis” or “spin puzzle” can be understood by the relativistic effect of quark
transversal motions due to the Melosh-Wigner rotation. The quark helicity ∆q measured in polarized deep inelastic
scattering is actually the quark spin in the infinite momentum frame or in the light-cone formalism, and it is different
from the quark spin in the nucleon rest frame or in the quark model. The flavor asymmetry of the Melosh-Wigner
effect for the valence u and d quarks and the intrinsic sea qq̄ pairs are also the important ingredients in a SU(6)
quark-spectator-diquark model framework to understand the “spin puzzle”. Such a picture of the spin structure can
be tested by use of several simple relations to measure the quark spin distributions in the quark model.

The proton “spin crisis”

The spin structure of the proton has received attention in the
particle physics society for a decade, and there has been a
vast number of theoretical and experimental investigations.
Parton sum rules and similar relations played important roles
in the establishment of the quark-parton picture for nucleons
in deep inelastic scattering. Thus any violation of a parton
sum rule is of essential importance to reveal possible new con-
tent concerning our understanding of the underlying quark-
gluon structure of hadrons. From the SU(6) quark model
one would expect that the spin of the proton is fully pro-
vided by the valence quark spins. Therefore the observation
of the Ellis-Jaffe sum rule violation received extensive atten-
tion by its implication that the sum of the quark helicities
is much smaller than the proton spin. The EMC result of
a much smaller integrated spin-dependent structure function
data than that expected from the Ellis-Jaffe sum rule trig-
gered the proton “spin crisis”, i.e ., the intriguing question
of how the spin of the proton is distributed among its quark
spin, gluon spin and orbital angular momentum.1) It is com-
monly taken for granted that the EMC result implies that
there must be some contribution due to gluon polarization
or orbital angular momentum to the proton spin. It will be
reported here based on previous works,2–6) however, that the
proton spin problem raised by the Ellis-Jaffe sum rule vio-
lation does not in conflict with the SU(6) quark model in
which the spin of the proton, when viewed in its rest refer-
ence frame, is provided by the vector sum of the quark spins,
provided that the relativistic effect from the quark transver-
sal motions,2–4) the flavor asymmetry between the u and d
valence quarks,3) and the intrinsic quark-antiquark pairs gen-
erated by the non-perturbative meson-baryon fluctuations of
the nucleon sea7) are taken into account.

The Melosh-Wigner rotation

As it is known, spin is essentially a relativistic notion as-
sociated with the space-time symmetry of Poincaré. The
conventional 3-vector spin s of a moving particle with finite
mass m and 4-momentum pµ can be defined by transforming
its Pauli-Lubánski 4-vector ωµ = 1/2JρσP νενρσµ to its rest
frame via a non-rotation Lorentz boost L(p) which satisfies
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L(p)p = (m,0), by (0, s) = L(p)ω/m. Under an arbitrary
Lorentz transformation, a particle state with spin s and 4-
momentum pµ will transform to the state with spin s′ and
4-momentum p′µ,

s′ = Rω(Λ, p)s, p′ = Λp, (1)

where Rω(Λ, p) = L(p
′)ΛL−1(p) is a pure rotation known as

Wigner rotation. When a composite system is transformed
from one frame to another one, the spin of each constituent
will undergo a Wigner rotation. These spin rotations are
not necessarily the same since the constituents have different
internal motion. In consequence, the sum of the constituent’s
spin is not Lorentz invariant.2)

The key points for understanding the proton spin puzzle lie
in the facts that the vector sum of the constituent spins for
a composite system is not Lorentz invariant by taking into
account the relativistic effect of Wigner rotation, and that it
is in the infinite momentum frame the small EMC result was
interpreted as an indication that quarks carry a small amount
of the total spin of the proton. We call the Wigner rotation
from an ordinary frame to the infinite momentum frame the
Melosh-Wigner rotation. From the first fact we know that
the vector spin structure of hadrons could be quite different
in different frames from relativistic viewpoint. We thus can
naturally understand the proton “spin crisis” because there is
no need to require that the sum of the quark spins is equal to
the spin of the proton in the infinite momentum frame, even
if the vector sum of the quark spins equals to the proton spin
in the rest frame.2)

The effect due to the Melosh-Wigner rotation can be best
understood from the light-cone spin structure of the pion. It
has been shown8) that there are higher helicity (λ1 + λ2 =
±1) components in the light-cone spin space wavefunction for
the pion besides the usual helicity (λ1+λ2 = 0) components.
Therefore the light-cone wavefunction for the lowest valence
state of pion can be expressed as

��ψπ
qq

�
= ψ(x,�k⊥, ↑, ↓) |↑↓〉+ ψ(x,�k⊥, ↓, ↑) |↓↑〉
+ψ(x,�k⊥, ↑, ↑) |↑↑〉+ ψ(x,�k⊥, ↓, ↓) |↓↓〉 . (2)

It is interesting to notice that the light-cone wave function (2)
is the correct pion spin wave function since it is an eigenstate
of the total spin operator (ŜF )2 in the light-cone formalism.8)
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It is thus necessary to clarify what is meant by the quan-
tity ∆q defined by ∆q ·Sµ = 〈P, S| q̄γµγ5q |P, S〉, where Sµ

is the proton polarization vector. ∆q can be calculated from
∆q = 〈P, S| q̄γ+γ5q |P,S〉 since the instantaneous fermion
lines do not contribute to the + component. One can eas-
ily prove, by expressing the quark wave functions in terms
of light-cone Dirac spinors (i.e ., the quark spin states in the
infinite momentum frame), that

∆q =

Z 1

0

dx [q↑(x)− q↓(x)], (3)

where q↑(x) and q↓(x) are the probabilities of finding, in the
proton infinite momentum frame, a quark or antiquark of fla-
vor q with fraction x of the proton longitudinal momentum
and with polarization parallel or antiparallel to the proton
spin, respectively. However, if one expresses the quark wave
functions in terms of conventional instant form Dirac spinors
(i.e ., the quark spin state in the proton rest frame), it can
be found, that

∆q =

Z
d3�p Mq [q

↑(p)− q↓(p)] = 〈Mq〉∆qQM , (4)

with

Mq = [(p0 + p3 +m)
2 − �p 2

⊥]/[2(p0 + p3)(m+ p0)] (5)

being the contribution from the relativistic effect due to the
quark transversal motions, q↑(p) and q↓(p) being the proba-
bilities of finding, in the proton rest frame, a quark or anti-
quark of flavor q with rest mass m and momentum pµ and
with spin parallel or antiparallel to the proton spin respec-
tively, and ∆qQM =

R
d3�p [q↑(p) − q↓(p)] being the net spin

vector sum of quark flavor q parallel to the proton spin in
the rest frame. Thus one sees that the quantity ∆q should
be interpreted as the net spin polarization in the infinite mo-
mentum frame if one properly considers the relativistic effect
due to internal quark transversal motions.2)

Since 〈Mq〉, the average contribution from the relativistic ef-
fect due to internal transversal motions of quark flavor q,
ranges from 0 to 1 (or more properly, it should be around
0.75 for light flavor quarks and approaches 1 for heavy fla-
vor quarks), and ∆qQM , the net spin vector polarization of
quark flavor q parallel to the proton spin in the proton rest
frame, is related to the quantity ∆q by the relation ∆qQM =
∆q/ 〈Mq〉, we have sufficient freedom to make the naive quark
model spin sum rule, i.e ., ∆uQM +∆dQM +∆sQM = 1, sat-
isfied while still preserving the values of ∆u, ∆d and ∆s as
parametrized from experimental data in appropriate expla-
nations. Thereby we can understand the “spin crisis” simply
because the quantity ∆Σ = ∆u+∆d+∆s does not represent,
in a strict sense, the vector sum of the spin carried by the
quarks in the naive quark model. It is possible that the val-
ue of ∆Σ = ∆u+∆d+∆s is small whereas the spin sum rule

∆uQM +∆dQM +∆sQM = 1 (6)

for the naive quark model still holds, though the realistic
situation may be complicated.

A light-cone quark-spectator-diquark model for nucleons

From the impulse approximation picture of deep inelastic

scattering, one can calculate the valence quark distributions
in the quark-diquark model where the single valence quark is
the scattered parton and the non-interacting diquark serves
to provide the quantum number of the spectator.3) From the
nucleon wave function of the SU(6) quark-spectator-diquark
model3), we get the unpolarized quark distributions

uv(x) = aS(x)/2 + aV (x)/6; dv(x) = aV (x)/3, (7)

where aD(x) (D = S or V representing the vector (V ) or sca-
lar (S) diquarks) is normalized such that

R 1

0
dxaD(x) = 3 and

denotes the amplitude for the quark q is scattered while the
spectator is in the diquark state D. Therefore we can write,
by assuming the isospin symmetry between the proton and
the neutron, the unpolarized structure functions for nucleons,

F p
2 (x) = xs(x) +

2

9
xaS(x) +

1

9
xaV (x);

Fn
2 (x) = xs(x) +

1

18
xaS(x) +

1

6
xaV (x), (8)

where s(x) denotes the contribution from the sea.

Exact SU(6) symmetry provides the relation aS(x) = aV (x)
which implies the valence flavor symmetry uv(x) = 2dv(x).
This gives the prediction Fn

2 (x)/F
p
2 (x) ≥ 2/3 for all x and

is ruled out by the experimental observation Fn
2 (x)/F

p
2 (x) <

1/2 for x → 1. It has been a well established fact that the
valence flavor symmetry uv(x) = 2dv(x) does not hold and
the explicit uv(x) and dv(x) can be parameterized from the
combined experimental data from deep inelastic scatterings
of electron (muon) and neutrino (anti-neutrino) on the pro-
ton and the neutron et al.. In this sense, any theoretical
calculation of quark distributions should reflect the flavor
asymmetry between the valence u and d quarks in a reason-
able picture. It has been shown3) that the mass difference
between the scalar and vector spectators can reproduce the
up and down valence quark asymmetry that accounts for the
observed ratio Fn

2 (x)/F
p
2 (x) at large x.

The amplitude for the quark q is scattered while the specta-
tor in the spin state D can be written as

aD(x) ∝
Z
[d2k⊥]|ϕD(x,k⊥)|2. (9)

We adopt the Brodsky-Huang-Lepage prescription for the
light-cone momentum space wave function 9) of the quark-
spectator

ϕD(x,k⊥)=AD exp

�
− 1

8β2
D

�
m2

q + k2
⊥

x
+
m2

D + k2
⊥

1− x
��
,(10)

where k⊥ is the internal quark transversal momentum, mq

and mD are the masses for the quark q and spectator D, and
βD is the harmonic oscillator scale parameter. The values of
the parameters βD,mq andmD can be adjusted by fitting the
hadron properties such as the electromagnetic form factors,
the mean charge radiuses, and the weak decay constants et al.
in the relativistic light-cone quark model. We simply adopt
mq = 330MeV and βD = 330MeV. The masses of the scalar
and vector spectators should be different taking into account
the spin force from color magnetism, and we choose, e.g .,
mS = 600MeV and mV = 900MeV as estimated to explain
the N-∆ mass difference. The mass difference between the
scalar and vector spectators causes difference between aS(x)
and aV (x) and thus the flavor asymmetry between the va-
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lence quark distribution functions uv(x) and dv(x). The cal-
culated results3) are in reasonable agreement with the exper-
imental data and this supports the quark-spectator picture
of deep inelastic scattering in which the difference between
the scalar and vector spectators is important to reproduce
the explicit SU(6) symmetry breaking while the bulk SU(6)
symmetry of the quark model still holds.

For the polarized quark distributions, we take into account
the contribution from the Wigner rotation. 2) In the light-
cone or quark-parton descriptions, ∆q(x) = q↑(x) − q↓(x),
where q↑(x) and q↓(x) are the probability of finding a quark
or antiquark with longitudinal momentum fraction x and po-
larization parallel or antiparallel to the proton helicity in the
infinite momentum frame. However, in the proton rest frame,
one finds,

∆q(x)=

Z
[d2k⊥]WD(x,k⊥)[qsz= 1

2
(x,k⊥)−qsz=− 1

2
(x,k⊥)],

(11)

with

WD(x,k⊥) = [(k
+ +m)2 − k2

⊥]/[(k
+ +m)2 + k2

⊥] (12)

being the contribution from the relativistic effect due to the
quark transversal motions, qsz= 1

2
(x,k⊥) and qsz=− 1

2
(x,k⊥)

being the probability of finding a quark and antiquark with
rest mass m and with spin parallel and anti-parallel to the

rest proton spin, and k+ = xM where M =
m2

q+k2
⊥

x
+

m2
D+k2

⊥
1−x

. The Wigner rotation factorWD(x,k⊥) ranges from
0 to 1; thus ∆q measured in polarized deep inelastic scatter-
ing cannot be identified with the spin carried by each quark
flavor in the proton rest frame.

The spin distribution probabilities in the quark-diquark
model read3)

u↑V =
1

18
; u↓V =

2

18
; d↑V =

2

18
; d↓V =

4

18
;

u↑S =
1

2
; u↓S = 0; d

↑
S = 0; d

↓
S = 0. (13)

Taking into account the Melosh-Wigner rotation, we can
write the quark helicity distributions for the u and d quarks

∆uv(x) = u
↑
v(x)− u↓v(x)

= − 1

18
aV (x)WV (x) +

1

2
aS(x)WS(x);

∆dv(x) = d
↑
v(x)− d↓v(x) = −1

9
aV (x)WV (x), (14)

whereWD(x) is the correction factor due the Melosh-Wigner
rotation. From Eq. (7) one gets

aS(x) = 2uv(x)− dv(x); aV (x) = 3dv(x). (15)

Combining Eqs. (14) and (15) we have

∆uv(x) = [uv(x)− 1

2
dv(x)]WS(x)− 1

6
dv(x)WV (x);

∆dv(x) = −1
3
dv(x)WV (x). (16)

Thus we arrive at simple relations between the polarized
and unpolarized quark distributions for the valence u and
d quarks. We can calculate the quark helicity distributions
∆uv(x) and ∆dv(x) from the unpolarized quark distribu-

tions uv(x) and dv(x) by relations (16), once the detailed
x-dependent Wigner rotation factorWD(x) is known. On the
other hand, we can also use relations (16) to study WS(x)
and WV (x), once there are good quark distributions uv(x),
dv(x), ∆uv(x), and ∆dv(x) from experiments. From another
point of view, the relations (16) can be considered as the
results of the conventional SU(6) quark model by explicitly
taking into account the Wigner rotation effect and the flavor
asymmetry introduced by the mass difference between the
scalar and vector spectators, thus any evidence for the inva-
lidity of Eq. (16) will be useful to reveal new physics beyond
the SU(6) quark model.

We calculated the x-dependent Wigner rotation factor
WD(x) in the light-cone SU(6) quark-spectator model

3) and
noticed slight asymmetry between WS(x) and WV (x). Con-
sidering only the valence quark contributions, we can write
the spin-dependent structure functions gp

1(x) and g
n
1 (x) for

the proton and the neutron by

gp
1(x) =

1

2
[
4

9
∆uv(x) +

1

9
∆dv(x)]

=
1

18
[(4uv(x)− 2dv(x))WS(x)− dv(x)WV (x)];

gn
1 (x) =

1

2
[
1

9
∆uv(x) +

4

9
∆dv(x)]

=
1

36
[(2uv(x)− dv(x))WS(x)− 3dv(x)WV (x)]. (17)

We found3) that the calculated AN
1 with Wigner rotation are

in agreement with the experimental data, at least for x ≥ 0.1.
The large asymmetry between WS(x) and WV (x) has conse-
quence for a better fit of the data.

As we consider only the valence quark contributions to gp
1(x)

and gn
1 (x), we should not expect to fit the Ellis-Jaffe sum

data from experiments. This leaves room for additional con-
tributions from sea quarks or other sources. We point out,
however, it is possible to reproduce the observed Ellis-Jaffe
sums Γp

1 =
R 1

0
gp
1(x)dx and Γ

n
1 =

R 1

0
gn
1 (x)dx within the light-

cone SU(6) quark-spectator model by introducing a large
asymmetry between the Wigner rotation factorsWS andWV

for the scalar and vector spectators. For example, we need
<WS >= 0.56 and <WV >= 0.92 to produce Γp

1 = 0.136
and Γn

1 = −0.03 as observed in experiments. This can be
achieved by adopting a large difference between βS and βV

which should be adjusted by fitting other nucleon properties
in the model.10) The calculated Ap

1(x), A
n
1 (x), and A

d
1(x) are

in good agreement with the data.3) This may suggest that
the explicit SU(6) asymmetry could be also used to explain
the EJSR violation (or partially) within a bulk SU(6) sym-
metry scheme of the quark model, or we take this as a hint
for other SU(6) breaking source in additional to the SU(6)
quark model.

We showed in the above that the u and d asymmetry in the
lowest valence component of the nucleon and the Melosh-
Wigner rotation effect due to the internal quark transversal
motions are important for re-producing the observed ratio
Fn

2 /F
p
2 and the polarization asymmetries A

N
1 for the proton,

neutron, and deuteron. For a better understanding of the
origin of polarized sea quarks implied by the violation of the
Ellis-Jaffe sum rule, we still need to consider the higher Fock
states implied by the non-perturbative meson-baryon fluctu-
ations.7) In the light-cone meson-baryon fluctuation model,
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the net d quark helicity of the intrinsic qq̄ fluctuation is neg-
ative, whereas the net d̄ antiquark helicity is zero. Therefore
the quark/antiquark asymmetry of the dd̄ pairs should be
apparent in the d quark and antiquark helicity distributions.
There are now explicit measurements of the helicity distri-
butions for the individual u and d valence and sea quarks by
SMC11) and HERMES.12) The helicity distributions for the u
and d antiquarks are consistent with zero in agreement with
the results of the light-cone meson-baryon fluctuation model
of intrinsic qq̄ pairs. The calculated quark helicity distribu-
tions ∆uv(x) and ∆dv(x) have been compared

3) with the
recent SMC data. The data are still not precise enough for
making detailed comparison, but the agreement with ∆uv(x)
seems to be good. It seems that the agreement with ∆dv(x)
is poor and there is somewhat evidence for additional source
of negative helicity contribution to the valence d quark be-
yond the conventional quark model. This again supports
the light-cone meson-baryon fluctuation model in which the
helicity distribution of the intrinsic d sea quarks ∆ds(x) is
negative.

The standard SU(6) quark model gives the constraints
|∆uv| ≤ 4

3
and |∆dv| ≤ 1

3
. A global fit13) of polarized deep in-

elastic scattering data leads to a value: ∆d = −0.43 ± 0.03.
In the light-cone meson-baryon fluctuation model, the an-
tiquark helicity contributions are zero. We thus can con-
sider the empirical values as the helicity contributions ∆q =
∆qv+∆qs from both the valence qv and sea qs quarks. Thus
the empirical result |∆d| > 1

3
strongly implies an additional

negative contribution ∆ds in the nucleon sea.

How to test the picture?

The key point that the light-cone SU(6) quark-diquark
model3) can give a good description of the experimental ob-
servation related to the proton spin quantities relies on the
fact that the quark helicity measured in polarized deep in-
elastic scattering is different from the quark spin in the rest
frame of the nucleon or in the quark model.2,4) Thus the ob-
served small value of the quark helicity sum for all quarks
is not necessarily in contradiction with the quark model in
which the proton spin is provided by the valence quarks.
From this sense, there is no serious “spin puzzle” or “spin
crisis” as it was first understood. Of course, the sea quark
content of the nucleon is complicated and it seems that the
baryon-meson fluctuation configuration7) composes one im-
portant part of the non-perturbative aspects of the nucleon.
We should not expect that the valence quarks provide 100%
of the proton spin, and the sea quarks and gluons should
also contribute some part of the proton spin, thus it is mean-
ingful to design new experimental methods to measure these
contributions independently. Useful relations that can be
used to measure the quark spin as meant in the quark model
and the quark orbital angular momentum from a relativistic
viewpoint have been discussed.4,5) It has been pointed out
by Schmidt, Soffer, and I that the quark spin distributions
∆qQM (x) are connected with the quark helicity distributions
∆q(x) and the quark transversity distributions δq(x) by an
approximate relation:4)

∆qQM (x) +∆q(x) = 2δq(x). (18)

The quark orbital angular momentum Lq(x) and the quark
helicity distribution ∆q(x) are also found by Schmidt and I to

be connected to the quark model spin distribution ∆qQM (x)
by a relation:5)

∆q(x)/2 + Lq(x) = ∆qQM (x)/2, (19)

which means that one can decompose the quark model spin
contribution ∆qQM (x) by a quark helicity term ∆q(x) plus
an orbital angular momentum term Lq(x). There is also a
new relation connecting the quark orbital angular momentum
with the measurable quark helicity distribution and transver-
sity distribution:5)

∆q(x) + Lq(x) = δq(x), (20)

from which we may have new sum rules connecting the quark
orbital angular momentum with the nucleon axial and tensor
charges. The quark transversity and orbital angular momen-
tum distributions have been also calculated in the light-cone
SU(6) quark-diquark model.4,5) Thus future measurements
of new physical quantities related to the proton spin struc-
ture can be used to test whether the framework is correct or
not, and detailed predictions and discussions can be found
in Refs. 4–6. We point out that one of the predictions of the
framework is the small helicity contribution from the anti-
quarks and the available experimental data11,12) are consis-
tent with this prediction. This is different from most other
works in which a large negative spin contribution from anti-
quarks is required to reproduce the observed small quark he-
licity sum. In our framework the Melosh-Wigner rotation2,4)

and the flavor asymmetry of the Melosh-Wigner rotation fac-
tors between the u and d quarks3) are the main reason for
the reduction of the quark helicity sum compared to the naive
quark model prediction.

This review is based on the works with my collaborators
Stan Brodsky, Tao Huang, Andreas Schäfer, Ivan Schmidt,
Jacques Soffer, and Qi-Ren Zhang. I would like to express
my great thanks to them for the enjoyable collaborations and
the encouragements from them.
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