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The consistent description of photochemical radical-ion production and effect of degenerate electron exchange
(DEE) in ESR spectra is given on the base of Integral Encounter Theory for the reactions in solutions.

Introduction

The description of homogeneous reactions in solutions is a
very important problem of theoretical chemical physics. It
should take into account stochastic motion of reactants in
solution and distance-dependent reaction probability. Actu-
ally this is a very complicated many-body problem especially
in the case of presence of reactants internal states. Fortu-
nately, in the typical experimental situation the concentra-
tion of reactants is low, i.e. the volume fraction of reactants
in solution is small. This assumption allows to develop the-
oretical approaches to the description of reacting systems.
The consistent treatment of reaction processes in liquid phase
leads to the so-called Integral Encounter Theory (IET)1–3)

kinetic equations for the reactant concentrations. In the
present work we employed IET for the consistent description
of the photochemical radical-ion production with taking into
account spin-selective character of recombination process and
of the effect of degenerate electron exchange (DEE) in ESR
spectra.

Integral encounter theory (IET)

The IET equations for the averaged over ensemble density
matrices σA and σB of reactants A and B have the following
form:2, 3)

∂σA(t)

∂t

=
ˆ̂
LAσA(t)− TrB

Z t

0

ˆ̂
RAB(t − τ)σA(τ)⊗ σB(τ)dτ,

∂σB(t)

∂t

=
ˆ̂
LBσB(t)− TrA

Z t

0

ˆ̂
RAB(t − τ)σA(τ)⊗ σB(τ)dτ. (1)

Here
ˆ̂
LA and

ˆ̂
LB are the Liouville operators describing evolu-

tion of internal states of reactants. The kernel,
ˆ̂
RAB, can be

expressed through two-particle Green function of the equa-
tion:3)

(∂t − ˆ̂Lr − ˆ̂
V AB(r)− ˆ̂

LA − ˆ̂
LB)

ˆ̂
GAB(r|r0, t − t0)

= δ(t − t0)δ(r − r0)
ˆ̂
I. (2)

Here
ˆ̂Lr - is the operator of relative stochastic motion of pair

of reactants,
ˆ̂
V AB(r) is the reaction operator, which depends

on distance vector r between reactants,
ˆ̂
I is the unity oper-

ator. The kernel
ˆ̂
RAB(t) can be written through this Green

function and reaction probability matrix
ˆ̂
V AB(r) by following

way:

ˆ̂
RAB(t)

= −
Z

dr
ˆ̂
V AB(r)

�
δ(t) +

Z
dr0

ˆ̂
GAB(r|r0, t)

ˆ̂
V AB(r0)

�
.

(3)

In case of many sorts of reactants we can define σA and σB

as follows:

σA =

0
BBB@

σA
1

σA
2

...
σA

n

1
CCCA and σB =

0
BBB@

σB
1

σB
2

...
σB

m

1
CCCA ,

(4)

whose components represent the density matrices of reactants
and reaction products. It was believed that it is suffice to use
the Markovian (or impact) version of kinetic equations.4, 5)

Such equations similar to formal chemical kinetics are more
customary than the original integro-differential ones. They
may be derived from the IET Eq. (1) by factoring σ̂A, σ̂B

outside the integral sign.

Radical-ion production

We employed IET for the derivation of kinetic equations for
the photochemical induced process of formation and subse-
quent recombination of radical-ions with taking into account
spin-selective character of recombination. These processes of-
ten take place in flash photolysis experiments in solutions. In
brief, the scheme of the process is the following. The excited
donor molecules D∗ can be quenched through the electron
transfer reaction by acceptor molecule A with formation of
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radical-ions D+ and A−. As a result the geminate radical-ion
pair (RP) D+ . . .A− is formed. Radical-ion pair is born in
the same spin state as the excited molecule D∗. Then radicals
can recombine through the back electron transfer reaction
from the singlet state of RP into ground state of reactants D
and A. Radicals can also escape in a bulk with subsequent
recombination during bimolecular encounters. Usually the
consideration of this process is divided on two stages. The
first one is the geminate stage that implies formation of RP
and the process of radical recombination during lifetime of
RP in “cage” of solution. The second stage is the bimolec-
ular bulk recombination of radicals avoiding recombination
in RPs. The IET allows description of this process in gen-
eral manner in wide time scale starting from the moment of
the excited molecules D∗ formation. We suppose that D∗

molecules are generated instanteneously, although there is no
principal problem to take into account finite duration of laser
pulse. We also take into account the finite lifetime τ∗ of the
excited state D∗.

According to IET method let us introduce following vector
states:

ND =

�
D∗

σ̂D+

�
, NA =

�
A

σ̂A−

�
, (5)

and assume that [A] � [D∗] = N , hence, [A](t) ≈ [A](t =
0) = A0. The operators describing the vector states evolution
are as following:

ˆ̂
QD =

(
−1/τ∗ 0

0
ˆ̂
RD+

)
,

ˆ̂
QA =

(
0 0

0
ˆ̂
RA−

)
. (6)

Here Liouville operators
ˆ̂
RD+ and

ˆ̂
RA− describe the evolution

of spin states of D+ and A− radical-ions correspondingly.
Then for the direct product of vector states Eq. (5) we have:

ND ⊗ NA =

8>><
>>:

AD∗

σ̂A− ⊗ σ̂D+

D∗σ̂A−
Aσ̂D+

9>>=
>>; .

(7)

Since D∗ and A− as well as A and D+ don’t react with each
other we then can reduce the basis Eq. (7) similarly as it have
been done in 6) to the following two-component system:

NA ⊗ ND =

�
AD∗

σ̂A− ⊗ σ̂D+

�
. (8)

Relaxation and reaction operators in this basis have the fol-
lowing form:

ˆ̂
Q =

(
−1/τ∗ 0

0
ˆ̂
RA− +

ˆ̂
RD+

)
, (9)

ˆ̂
W (r) =

(
−WI(r) 0

WI(r)P̂T − ˆ̂
WR(r)

)
. (10)

Here WI(r) and WR(r) are the r-dependent reactivities of

the forward and back electron transfer correspondingly, P̂T

describes the formation of RP in singlet/triplet state. Omit-

ting necessary calculations for the memory operator
ˆ̂
M(t) we

have following expressions:

ˆ̂
M(t) =

�
m̂11(t) 0
m̂21 m̂22

�
, (11)

˜̂m11(s) = −(s+ 1/τ∗)
Z

d3rWI(r)˜̂ν(r, s), (12)

˜̂m21(s)

= (s+ 1/τ∗)
Z

d3r
h
WI(r)

˜̂
δ(r, s)P̂T − ˆ̂

WR(r)˜̂µ(r, s)
i
,

(13)

˜̂m22(s) = −(sˆ̂I − ˆ̂
R)

Z
d3r

ˆ̂
WR(r)

˜̂
f(r, s),

ˆ̂
F =

�
ν̂ 0

µ̂ f̂

�
, (14)

where ν̂, µ̂, f̂ satisfy to the following equations,

∂ν̂

∂t
= L̂ν̂ − WI(r)ν̂ − 1

τ∗ ν̂, (15)

∂µ̂

∂t
= L̂µ̂ − ˆ̂

WR(r)µ̂+
ˆ̂
Rµ̂+WI(r)ν̂

ˆ̂
PT, (16)

∂f̂

∂t
= L̂f̂ − ˆ̂

WR(r)f̂ +
ˆ̂
Rf̂ . (17)

Where
ˆ̂
R =

ˆ̂
RA− +

ˆ̂
RD+ . Initial conditions are as follows:

ν̂(r, 0) = 0, µ̂(r, 0) = 0, f̂(r, 0) =
ˆ̂
I. For the concentration of

the excited donors and radical-ion density matrix we obtain
the following kinetic equations.

dN(t)

dt
= A0

Z t

0

m̂11(τ)N(t − τ)dτ − N(t)

τ∗ , (18)

dσ̂A

dt
= A0

Z t

0

TrDm̂21(τ)N(t − τ)dτ

+TrD

Z t

0

m̂22(τ)σ̂A−(t − τ)⊗ σ̂D+(t − τ)dτ

+
ˆ̂
RAσ̂A, (19)

with the initial conditions N(t = 0) = D∗
0 , σ̂A−(t = 0) = 0,

σ̂D+(t = 0) = 0. On the first sight the obtained Eqs. (11–
19) are rather complicate. However they have transparent
physical interpretation. Thus the first term in Eq. (19) is
proportional to product A0N and describes the quenching of
excited donors and formation of radical-ion in geminate pro-
cess. It takes into account the reaction of the back electron
transfer during lifetime of reactants in “cage”. It is reflected

by the presence of term
ˆ̂
WR(r)ˆ̃µ(r, s) in Eq. (13). The second

term in Eq. (19) is proportional to the product σ̂A− ⊗ σ̂D+

and describes bulk radical-ion recombination process. Thus,
both terms describe generation and decay of the radical-ions
in the wide time scale starting from the moment of excited
D∗ molecule formation. These kinetic equations are the gen-
eralization of Burshtein and Frantsuzov equations obtained
in paper 6) without taking into account of spin degrees of
freedom.

Degenerate electron exchange

Also on the basis of IET we investigated the effect of DEE
process,

A− +A↔ A+A−, (20)

on the ESR spectra of free radicals. Process like Eq. (20) were
also investigated by OD ESR,7) MARY,8) CIDNP,9) SNP,10)
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DNP.11) In all cases the model description of such reaction
was based on the conception of random Markovian process:
non-correlated hopping between lines of the radical-ion hy-
perfine structure. The frequency of “hops” was often identi-
fied with the frequency of diffusional encounters of radical-ion
with neutral molecules A.10–13) This approach is equivalent
to the well known McConnell equations or sudden modula-
tion theory, which is always used for the description of the
spectral diffusion. However, in such an approach it is im-
possible to account for repeated resonant electron transfer
between the reactants in re-encounters. At the same time
IET examines carefully the diffusional event of the approach
of reactants and the space dependence of the probability of
the reaction between them enables one to refine a phenomeno-
logical model of non-correlated frequency migration over HFI
spectrum. The process of repeated electron transfer during
re-contacts can results in electron spin dephasing, thus giving
rise to the effects observed. Here we made consistent theo-
retical treatment of ion-molecular charge transfer based on
the latest achievements 3) of the encounter theory, and seeks
to refine conventional scheme of non-correlated frequency mi-
gration employed in the analysis of magneto-spin effects.

In accordance with the formalism of IET for degenerate elec-
tron exchange reaction Eq. (20) reactants A− and A should
be considered as internal quasistates of some “effective” par-
ticles 3) A and B which coincide in our case

A =

�
A−

A

�
, B =

�
A−

A

�
. (21)

Above all we are interested in the manifestation of DEE in
ESR spectrum of radical ion A−. To determine the shape of
this spectrum, it is necessary to calculate the non-diagonal

element of the electron density matrix A−, σ̂(e)
αeβe

, (transverse
magnetization). We will restrict our consideration to the case
of strong external magnetic fields where secular approxima-
tion for hyperfine interaction (HFI) can be applied. Also we
allow for the phase relaxation of electron spin, this results in
the decay of the non-diagonal density matrix elements with
the characteristic time T2. As it was already mentioned in
many cases it will suffice to use the Markovian (or impact)
variant of kinetic equations.4, 5) As a result, the following
Markovian equations for Mn that is σ̂αeβe (i.e. transversal
magnetization) at the n-th component of the spectrum can
be obtained:

Ṁn =

�
iωn − 1

T2

�
Mn − c

 X
j

Knjfj

!
Mn

+ cfn

X
j

KjnMj . (22)

Here Knj = k
�
1 + k/kD + kG̃(iωn − iωj)/kD

�−1

is the rate

coefficient, fn is the statistical weight of the given HFS com-
ponent, G̃(s) = (1+

√
sτd)

−1 for the case of continuous diffu-

sion of non-interacting particles,14) ωn - frequency position of
n-th component. To obtain ESR spectrum, one should take
summation over all HFS components and calculate its imag-
inary part. The difference between Eqs. (22) and ordinary
equations of non-correlated frequency migration (NCFM) 15)

lies in the dependence of the transfer rate Knj between the
components on the difference in frequency between them.
This effect is essential at large values of HFI constants or
in the case of viscous solution: anτd & 1 (further we will be

interested exactly in this case), and disappears with decreas-
ing time τd of the encounter. With anτd → 0 we obtain the
well-known NCFM equations,15)

Ṁn =

�
iωn − 1

T2

�
Mn − 1

τ0
(1− fn)Mn + fn

1

τ0

X
j �=n

Mj .

(23)

However, here τ0 that is the characteristic time of ion-
molecular charge transfer is defined in an unusual way,

τ0 =
2k + kD

kkDc
=

k +
kD

2

k
kD

2
c

. (24)

Formerly, it was believed 10–13) that for diffusion-controlled
DEE reaction (k � kD) τ0 = (ckD)

−1 thus τ0 was identified
with the characteristic time (ckD)

−1 between the encounters
of reactants. So it was assumed that the encounter would
result in irreversible electron transfer to neutral molecule A
with the probability 1. However, as is seen from Eq. (24), for
diffusion-controlled DEE we have another result,

τ0 = (ckD/2)−1. (25)

The above twofold difference results exactly from the possi-
bility of repeated reversible electron transfer during the en-
counter, i.e., from re-contacts that decrease the efficiency of
the encounter. Thus, taking account of electron transfer re-
versibility leads to essential modification of the NCFM the-
ory. In the opposite case, anτd � 1, we obtain the equations
of the same form as Eq. (23) but with a different characteris-
tic charge transfer time τ0 = (k+ kD)/(kkDc). For diffusion-
controlled reaction this gives conventional result,

τ0 = (ckD)
−1. (26)

The difference between Eq. (26) and Eq. (25) is determined
by the fact that at anτd � 1 repeated spin transitions take
place between the spectrum components with essentially dif-
ferent frequencies; this results in considerable random phase
shift of electron spin precession during the encounter. As a
result electron spin phase correlation is completely lost and
transverse magnetization cannot be transferred from one HFS
component to another. The difference between Eq. (22) and
Eq. (23) being inessential in the kinetic control, further con-
sideration will be restricted to the case of diffusion-controlled
DEE. So physically qualitative difference between the results
of the encounter theory and NCFM is due to the following.
At anτd & 1 the change in electron spin precession phase
in external magnetic and nuclear fields during the encounter
cannot be neglected. HFI between electron and nuclear spins
is modulated due to repeated random electron jumps from
one nuclear structure to another during re-contacts. Such a
random HFI modulation results in additional electron spin
dephasing and requires that the description of the system be
refined which is ignored by the NCFM theory.

Slow exchange. It corresponds to the case
1

τ0
 |ωn − ωj |.

We shall also take that
1

T2
 |ωn − ωj | (the case of non-

overlapping lines in the absence of the exchange). In this
case the ESR spectrum consists of separate Lorentzian lines
of the width,
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1

T2
+ Γn =

1

T2
+ cRe

0
@X

j �=n

Knjfj

1
A , (27)

at the frequency,

ωn +∆ωn

= ωn − cIm

0
@X

j �=n

Knjfj

1
A+

c

T2
Re

0
@X

j �=n

Knjfj

ωj − ωn

1
A .

(28)

While in NCFM theory the frequency shift δω
(0)
n and the

contribution Γ
(0)
n to the line width are easily found from

Eqs. (28), (27) formally tending τd → 0,

δωn → δω(0)
n =

1

T2

X
j �=n

fj/τ0

ωj − ωn
, Γn → Γ (0)

n =
1− fn

τ0
,

1

τ0
=

ckD

2
. (29)

These results can be applied to the detailed analysis of exper-
imental ESR spectra in the presence of degenerate electron
exchange reactions.

Fast exchange. The situation corresponding to the fast ex-

change
1

τ0
� |ωn − ωj | that results in the spectrum collapse

into a single line is beyond the limits of the encounter the-
ory applicability at a & τ−1

d when NCFM theory results need
refinement. The reason is that simultaneous fulfillment of bi-
nary encounters condition:1) τd/τ0 . ckDτd = 3ξ  1, fast

exchange condition
1

τ0
� |ωn−ωj | and aτd & 1 is impossible.
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