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First-principles calculation of elastic properties of
solid argon at high pressures
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The density and the elastic stiffness coefficients of fcc solid argon at high pressures from 1 GPa up to 80GPa
are computed by the first-principles pseudopotential method with the plane-wave basis set and the generalized
gradient approximation (GGA). The result is in good agreement with the experimental result recently obtained
by means of Brillouin spectroscopy by Shimizu et al. [Phys. Rev. Lett. 86, 4568 (2001)]. The Cauchy condition
was found to be strongly violated as in the experimental result, indicating a large contribution from the non-
central many-body force. The present result has clarified that the standard density functional method with
periodic boundary conditions can be applied for calculating the elastic properties of rare gas solids at high
pressures in contrast to those at low pressures where dispersion forces are important.

Introduction

Rare gas atoms are among the simplest substances in terms of
physical and chemical properties because of their closed-shell
electronic configuration. Many physical properties of rare
gases at low pressures have been predicted by using ab initio
or empirical two-body potentials such as the Lennard-Jones
potentials, which consist of a short-range repulsive potential
and a long-range attractive dispersion potential.1, 2) At low
temperatures, the rare gas atoms form van der Waals crys-
tals of the fcc structure except helium, which crystallizes to
the hcp structure. The crystal structure and the binding en-
ergy of rare gas solids have been determined very accurately
by experiments. It has been found that two-body potentials
can describe these properties very well. Although the two-
body potentials underestimate the binding energy by a few
percent, the inclusion of the three-body potentials as a small
correction reduces the error to within one percent.3, 4)

Recently, the development of Brillouin spectroscopy in con-
junction with diamond-anvil cells (DAC’s) 5) has opened the
door for investigating the elastic properties of rare gas solids
at high pressures, which may be important for earth and plan-
etary sciences. The pressure dependence of the elastic stiff-
ness coefficients has been experimentally determined up to
33 GPa by Grimsditch et al.6) and up to 70 GPa by Shimizu
et al.7) The two groups used the envelope method to deter-
mine the elastic stiffness coefficients: the Brillouin frequency
shifts are measured without identifying the crystal orienta-
tion. Then, the acoustic velocities calculated from the fre-
quency shifts scatter because the acoustic velocity in crystals
depends on the propagating direction. The maximum and
minimum values of acoustic velocities at each pressure are
determined and the envelope curves of the acoustic veloci-
ties are drawn. The elastic stiffness constants are determined
by comparing the envelope curves with the solutions of the
elastic equation. Shimizu et al.7) also determined the elastic
stiffness coefficients of solid argon from 1.6GPa to 4GPa by
in situ Brillouin spectroscopy,8) in which the crystal orien-
tation is identified and more accurate results are obtainable.
From the results of in situ Brillouin spectroscopy and the en-
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velope method at high pressures, Shimizu et al.7) found that
solid argon becomes harder than iron 9) and that the devia-
tion from the Cauchy relation becomes significant. The latter
implies that the contribution of the non-central many-body
force becomes more and more important at higher pressures,
and it cannot be treated any longer as a small correction to
the two-body potentials.

Computational method

However, by now, calculations of elastic properties at high
pressures have been limited to those with empirical two-body
potentials 2, 6, 10) as at low pressures. In this study, therefore,
we investigate the elastic stiffness coefficients of fcc solid ar-
gon at high pressures by using first-principles calculations
with periodic boundary conditions 11–13) at zero temperature
and under constant pressures, which can treat the effects of
many-body potentials of crystals in a simple and direct way.
The valence wave functions are expanded in a plane wave ba-
sis set truncated at a kinetic energy of 560 eV. The electron-
ion interactions are described by the Vanderbilt-type ultra-
soft pseudopotentials.14) The effects of exchange-correlation
interaction are treated within the generalized gradient ap-
proximation of Perdew et al. (GGA-PBE).15) The model con-
sists of an fcc unit cell containing four argon atoms. The
Brillouin zones are sampled with 8 × 8 × 8 Monkhorst-Pack
k-points 16) by using time-reversal symmetry only. During the
structural optimization, the enthalpy H = E + PV is mini-
mized by varying the length of the lattice vectors, while the
angles between the lattice vectors and the atomic positions in
the unit cell are fixed. In the geometrical optimization, the
total stress tensor 17) is reduced to the order of 0.001 GPa by
using the finite basis-set corrections.18)

The elastic stiffness tensor cijkl relates the stress tensor σij

and the strain tensor εkl by Hooke’s law,

σij = cijklεkl (i, j, k, l = x, y, z). (1)

Since the stress and strain tensors are symmetric, the most
general elastic stiffness tensor has only 21 non-zero indepen-
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dent components. For cubic crystals, they are reduced to
three components, c11 ≡ cxxxx, c12 ≡ cxxyy, and c44 ≡ cyzyz

(in the Voigt notation). These elastic stiffness coefficients
can be determined by computing the stress generated by forc-
ing a small strain to an optimized unit cell.19, 20) The lattice
vectors �a′

i of the strained unit cell are determined from the
lattice vectors �ai of the optimized unit cell by the relation
�a′

i = (I + ε)�ai, where I is the unit matrix and ε is a strain
tensor. Two strain tensors,

εA =

0
@

e 0 0
0 0 0
0 0 0

1
A , (2)

εB =

0
@

0 e/2 0
e/2 0 0
0 0 0

1
A , (3)

are used to determine the three elastic stiffness coefficients,
c11, c12, and c44 from Eq. (1), namely, σA

xx = c11e, σA
yy =

σA
zz = c12e, and σB

xy = c44e where σA and σB are the stresses

resulting from straines εA and εB , respectively. The values
of σA and σB are calculated with e = 0, 0.01, and 0.02 at
each pressure, and fitted to a parabolic function of e to re-
move non-linear contributions. The convergence of the elas-
tic stiffness coefficients with respect to the cut-off energy and
the number of k-points was estimated to be of the order of
1 GPa by increasing the cutoff energy to 1120 eV and the
Monkhorst-Pack k-points to 12 × 12× 12, respectively.

Results and discussion

Figure 1 shows the ρ–P equations of state. The agreement
between the experiment and the GGA calculation indicates
that the lattice constants of solid argon are mainly deter-
mined by the balance between the short-range repulsive force
and the external pressure. The van der Waals force, which is
not taken into account explicitly in the GGA calculation, is
negligible in this pressure range.

Figure 2 shows the pressure dependence of the elastic stiffness
coefficients, c11, c12, and c44. The elastic stiffness coefficients
increase linearly with increasing pressure. These elastic stiff-
ness coefficients satisfy the generalized elastic stability crite-
ria for cubic crystals under hydrostatic pressure,21–23)

c11 + 2c12 > 0, c44 > 0, and c11 − c12 > 0. (4)

Fig. 1. �−P equations of state for fcc solid argon. The solid curve
with solid circles represents the present result. Open circles repre-
sent the experimental result obtained by Shimizu et al.7) by means
of Brillouin spectroscopy.

Fig. 2. Pressure dependence of the elastic stiffness coefficients, c11,
c12, and c44 of fcc solid argon. Solid lines with closed symbols
represent the present result. Dashed lines represent experimental
result at 295 K obtained by the envelope method by Shimizu et
al.7) Cross symbols indicate the result of self-consistent phonon
calculation based on pair potentials by Grimsditch et al.6)

The agreement between the present and the experimental re-
sults for c11 and c12 does not appear to be very good between
10 GPa and 70 GPa. However, the agreement improves when
the acoustic velocities are plotted as a function of the pressure
as shown in Fig. 3.

Figure 3 shows the pressure dependence of the squares of the
acoustic velocities, which are related to the elastic stiffness
coefficients by

v2
LA,max = (c11 + 2c12 + 4c44)/(3ρ), (5)

v2
LA,min = c11/ρ, (6)

v2
TA,max = c44/ρ, (7)

v2
TA,min = (c11 − c12)/(2ρ). (8)

The agreement between the present result and the experi-
mental one is better than that in Fig. 2, although theoretical
vTA,min above 10GPa seems slightly smaller than the exper-
imental data. The difference between the present result and
the experimental result in Fig. 2 may depend on how the
experimental envelope curves are drawn in Fig. 3.

Figure 4 shows the pressure dependence of the elastic
anisotropy A = 2c44/(c11 − c12), which is the ratio of two
shear moduli c44 and (c11 − c12)/2, and which becomes unity
for isotropic elasticity. The anisotropy calculated between
1.6 and 4GPa is approximately three, and agrees well with
the experimental result. Above 4GPa, the experimental
anisotropy gradually decreases to two, while the present re-
sult is almost constant up to 80GPa.

The deviation from the Cauchy relation δ = c12 − c44 − 2P
is a measure of the contribution from the non-central many-
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Fig. 3. Pressure dependence of the squares of acoustic velocities,
v2

LA,max, v2
LA,min, v2

TA,max, and v2
TA,min, of fcc solid argon. Solid

curves with closed symbols represent the present result. Open
symbols represent the experimental data obtained by Shimizu et
al.7) The envelope method was used for the above 4GPa and in
situ Brillouin spectroscopy was used for the below 4GPa. Dashed
curves are the envelope curves for the experimental data.7)

Fig. 4. Pressure dependence of the elastic anisotropy, A =

2c44/(c11 − c12), for fcc solid argon. Open squares represent
the theoretical result by Grimsditch et al.6) Other symbols and
lines have the same meaning as in Fig. 3.

Fig. 5. Pressure dependence of the deviation from the Cauchy rela-
tion, Æ = c12 − c44 − 2P, for fcc solid argon. Symbols and lines
have the same meanings as in Fig. 4.

body force since the Cauchy relation c12 = c44+2P should be
satisfied when interatomic potentials are purely central.6, 24)

Figure 5 shows the pressure dependence of δ. The deviation δ
for the experimental result 7) becomes larger as the pressure
increases, which indicates that the non-central many-body
force becomes more and more important at high pressures.
The δ of the present result agrees well with the experimental
result, indicating that the first-principles calculation with the
plane wave basis set and the pseudopotentials can correctly
describe the many-body force. The δ for the theoretical result
of Grimsditch et al. is almost zero for all pressures since their
theory is based on pair potentials.

Summary

In summary, we computed the elastic properties of fcc solid
argon at high pressure by using the first-principles calcu-
lation at zero temperature with the plane wave basis set,
pseudopotentials and generalized gradient approximation for
exchange-correlation interaction. We have shown that the
standard density functional method with periodic boundary
conditions at zero temperature and under constant pressures
can be successfully applied for calculating the elastic proper-
ties of rare gas solids at high pressures in contrast to those
at low pressures where dispersion forces are important. Al-
though the effects of thermal and zero-point vibrations were
not included in the present calculation, thermal effects are
expected to be small at high pressures. The long-range van
der Waals force is also not taken into account explicitly. How-
ever, the lattice constant and the elastic properties of solid
argon at high pressures are mainly determined by the balance
between the short-range repulsive force and the external pres-
sure, and the van der Waals force is negligible.
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