微細構造デバイス用電気計測システムの開発

○板倉敬二郎、居村史人、中田明良、久保田弘:熊本大学
小坂光二、岩渕哲也、小坂哲也、江頭義也:有限会社 熊本テクノロジー
荒尾淳、井上知行、前田安弘、高木宏司:株式会社 アラオ

1. はじめに

現在、MOSFET をはじめとした微細構造デバイスの電気 計測を行う場合、コンタクトホールへのメタル配線形成 プロセスが必要であり、デバイスの電気計測、プロセス への即時フィードバックは困難である。また、従来の計 測システムでは端子間の位置決めは数 10µm 程度の分解 能しかなく、任意の微小領域を計測するような自由度の 高い操作は不可能であった。それゆえ、これらの問題を 解決する自由度が高く、直接的に電気計測ができる精密 な計測システムの開発が望まれてきた。

本稿では我々が開発した、デバイスの直接的電機計測 を目的とする高精度小型ナノマニピュレータを SEM(電子 顕微鏡)内に設置し微細構造デバイス用電気計測システ ムの構成及びその評価・結果を報告する。

2. システム構成及び仕様

図1は開発したシステムの構成図である。

主な構成はナノマニピュレータを搭載した SEM 本体及 び操作装置、ナノマニピュレータ用ドライバ及び制御 PC、 ならびに半導体パラメータ計測機器と CAD 設計用 PC から 成る。SEM 内に搭載された図 2 のナノマニピュレータは、 駆動方式に非共振型超音波モータ^[1-3]を採用することに より X・Y 軸 20mm、Z 軸 5mm の長ストロークにも係わらず 制御分解能において X・Y 軸で 10nm、Z 軸でストローク比 より理論値 2nm の高分解能を実現している^[4,5]。本開発で はサイズを 65×65×77mm、重量 1.5kg までさらに小型軽 量化したため、SEM 内に試料ステージとともに4 つのマニ ピュレータを搭載することができた。また、ステージと マニピュレータはルータを介することにより各々を独立 に、または連動させて稼動することができるため、高精 度で自由度の高い計測が可能である。

計測に用いるプローブはこのマニピュレータの上部に 装着され、微小電流等の検出はトライアキシャル・ケー ブルでプローブと接続されている半導体パラメータ計測 機器で行う。

システムの操作はユーザー自らが制御PCに表示される SEM 画像を観察しながらマウス・ジョイスティック等の入 力装置を使い、手動で任意の微小領域へプローブをマニ

図1.システム構成

図2.小型ナノマニピュレータ

ピュレートすることができる。また、CAD データをもとに マニピュレータを連動させ自動計測制御を行わせること も可能である。

3. システムの評価

市販のタングステン・プローブ(日本マイクロニクス: 先端径 1μm)を用いた電気特性計測によりシステムの試 験的評価を行った。

図3は横軸に±10mVの電圧を与えたときの電圧-電流 特性を示し、図4は傾き10°を持つプローブの先端とス テージ上面との距離を横軸として並列容量の変化を示す。 ただし、計測は真空度7×10⁻Pa下で試料ステージをグラ ンドとして行い、計測機器は電圧-電流特性においては Agilent-4156Cを、容量計測においては Agilent-E5250A を測定周波数 1MHz で使用した。

この計測結果より、電圧-電流特性は線形に変化して いるので直列抵抗 1.7Ωが導かれ、目標である直列抵抗 10Ωをクリアしていることが分かる。しかし、並列容量 の最大値は 360fF 程度あり、こちらは目標である 10fF を クリアできておらず、また容量変化も対数関数的である。 そのため、いかに並列容量を低く抑えながら直線的な変 化を行わせるかが今後の課題となる。

4. 微小電極プローブの形成

MOSFET 等の微細構造デバイスの計測には、1µm以下の 微小電極プローブが必要である。

そのため我々は独自に先端径 500nm 以下、直列抵抗 10 Ωを目標に微小電極プローブの開発を進めている。図 5 に形成した微小電極プローブの先端形状を、測長 SEM(ト プコン MI5080)で観察した画像を示す。

このプローブはまずプラーにてガラス棒を加熱・延伸 することで先端径 0.15 µm の形状で形成させ、次に 0.5% の希フッ酸で先端を 80 秒間エッチングすることで先鋭化 し、最後に真空下で 60rpm の回転動作を行いながら金属 を電子ビームで蒸着したものである。使用する金属試料 はチタンと銅の 2 種類を試している。

5. まとめ

微細構造デバイス用電気計測システムの開発及び評価 を行った。今後の課題としては、直列抵抗及び並列容量 の目標値をクリアする微小電極プローブの形成と真空内 での動作確認である。また、このシステムは微細構造デ バイス以外にも制御分解能の高さを活かし、各種ナノ材 料の物性測定や直接微細加工などの分野への応用も考え ている。

謝辞

本開発は、経済産業省の平成13年度即効型地域新生コンソーシアム研究開発事業 の委託により(財)くまもとテクノ産業財団を管理法人として熊本大学、(有)熊本テク ノロジー、(株)アラオが実施中の「半導体電気計測のためのナノプローブ技術の開発」 に関するものである。

参考文献

 Y. Egashira, K. Kosaka, S. Takada, T. Iwabuchi, M. Shibata, K. Nagamoto, and H. Kubota, "Development of an Ultra-Precision Positioner and Its Applications," Solid State Phenomena, Vols. 78-79, pp. 413-418, 2001

[2] Y. Egashira, K. Kosaka, S. Takada, T. Iwabuchi, T. Baba, S. Moriyama, T. Harada, K. Nagamoto, A. Nakada, H. Kubota, and T. Ohmi, "0.69nm Resolution Ultrasonic Motor for Large Stroke Precision Stage," Proceedings of IEEE-Nano 2001, pp. 397-402, 2001.

[3] Y. Egashira, K. Kosaka, T. Iwabuchi, T. Kosaka, T. Baba, T. Endo, H. Hashiguchi, T. Harada, K. Nagamoto, M. Watanabe, T. Yamakawa, N. Miyata, S. Moriyama, Y. Morizono, A. Nakada, H. Kubota, and T. Ohmi, "Sub-Nanometer

図4.距離に対する容量の変化

図5.金属を蒸着した微小電極プローブ

Resolution Ultrasonic Motor for 300mm Wafer Lithography Precision Stage," Jpn. J. Appl. Phys., Vol. 41, Part I, No. 9, pp. 5858-5863, 2002.

[4] 小坂光二, 江頭義也, 小坂哲也, 荒尾淳, 居村史人, 中田明良, 久保田弘, 「半導体 製造技術の超精密技術を応用して開発したナノマニピュレータ」, 機械設計, 第46 巻, 第10号, (日刊工業新聞社), pp. 59-63, 2002.

[5] F. Imura, A. Nakada, Y. Egashira, H. Kubota, K. Kosaka, T. Kosaka, H. Kagami, K. Masuda, J. Hamada, M. Tada, and T. Moriuchi, "Development of Nano-Surgery System for Cell Organelles," in Proceedings of SICE Annual Conference 2002 in Osaka, pp. 3212-3217, SICE02-0534, Osaka, 2002.

お問合せ先 熊本大学 久保田弘 TEL:096-342-3294 E-mail:kubota@eecs.kumamoto-u.ac.jp