Reconsideration of S – genotype for a Japanese Pear 'Kumoi' Kazuma Okada¹, Takeshi Takasaki^{2*}, Toshihiro Saito³, Yuki Moriya¹, Carlos Castillo¹, Shigemi Norioka⁴ and Tetsu Nakanishi¹ ¹Graduate School of Science and Technology, Kobe University, Rokkodai, Nada, Kobe 657 – 8501 ²Faculty of Agriculture, Kobe University, Rokkodai, Nada, Kobe 657 – 8501 ³National Institute of Fruit Tree Science, Fujimoto, Tsukuba 305 – 8605 ⁴Graduate School of Frontier Biosciences, Osaka University, Yamadaoka, Suita 565 – 0871 ### **Summary** A Japanese pear 'Kumoi' was previously determined as S_3S_4 by pollination tests, but its S-genotype was reconsidered following our PCR-RFLP (S_1 to S_2) analyses and pollination tests. Based on its compatibility with 'Seigyoku' (S_3S_4), and PCR-RFLP analysis, 'Kumoi' was classified as S_1S_3 for the first time. Additional pollination tests were necessary to prove our contention, but 'Kumoi' did not supply sufficient flowers. 'Sekaiichi' was also assigned as S_1S_3 by PCR-RFLP analysis, and incompatibility with 'Kumoi'. Instead of 'Kumoi', 'Sekaiichi' was pollinated with the pollen from an S_3 -homozygote and that from an S_4 -m-homozygote. The lack of fruit set revealed that 'Sekaiichi' was incompatible with the S_3 and S_4 -m pollen, leading us to predict that the S-genotype of 'Sekaiichi' was S_1S_3 or S_3S_4 . Two S-genotypes with S_1S_3 and S_2S_3 segregated in hybrid progenies between 'Doitsu' (S_1S_2) and 'Sekaiichi', indicating that S_1 was present in 'Sekaiichi'. These results of pollination tests with 'Sekaiichi' indicated the S-genotype of 'Kumoi' was S_1S_3 . **Key Words**: Japanese pear, *Pyrus pyrifolia*, self-incompatibility, *S*-genotype, *S*-RNase. ### Introduction Japanese pear (Pyrus pyrifolia Nakai) exhibits gametophytic self-incompatibility that is controlled by a single S-locus with multi-alleles. S-genotype assignments have been used as an aid for both the breeding and management of pollination in orchards. Terami et al. (1946) identified seven S-alleles (S_1 to S_7) and classified 23 cultivars into 10 S-genotypes. Using these Sgenotype assignments as first cross indicators, the Sgenotypes have been determined for almost 40 cultivars (Hiratsuka et al., 1998; Machida et al., 1982; Ogaki, 1958). The present cross indicators do not cover the 21 S-genotypes having a combination of seven alleles. Pollens derived from S-homozygotes make S-genotype assignments easy. Three Shomozygotes, '312-9' (S_2S_2) , '312-6' (S_3S_3) , and 'Nashi chuukanbohon nou 1 gou' $(S_4^{sm}S_4^{sm})$ are selected from selfed progenies of 'Choujuurou' (S_2S_3) and selfcompatible cultivar 'Osa-Nijisseiki' ($S_2S_4^{sm}$ (sm represents stylar-part mutant)). The three trees have been used as single allele indicator for S_2 , S_3 and S_4 (Sato et al., 1991; Terai et al., 1999). Recently 'Doitsu' (S_1S_2) was found to be compatible with the pollen from 'Nijisseiki' (S_2S_4) but incompatible with the pollen from 'Osa-Nijisseiki' $(S_2S_4^{sm})$, revealing that the S_4^{sm} pollen recognizes not only S_4 but also S_1 (Saito et al., 2002). The S- allele of Japanese pear encodes S- RNase as a pistil product (Ishimizu et al., 1996; Sassa et al., 1992). Based on the nucleotide sequences of S_1 to S_7 -RNase, a PCR-RFLP (S_1 to S_7) system has been established for rapidly assigning the S-genotype in Japanese pear cultivars harboring S_1 - to S_7 - allele; Genomic PCR with S-allele-specific primers provided S_1 - to S_7 - amplicon (product), which are discriminated by following digestions with six S-allele-specific restriction endonucleases (Ishimizu et al., 1999). Recently, two new S-RNase genes, S_8 and S_9 -RNase, have been cloned from some cultivars for which this system could not be adapted. Hence, a new PCR-RFLP (S_1 to S_9) system has been developed for S-genotype assignments in Japanese pear cultivars harboring S_1 to S_2 (Castillo et al., 2002; Takasaki et al., 2004). Using PCR-RFLP system and pollination tests, we revised four S-genotypes, 'Akaho' (S_3S_5) , 'Tanzawa' (S_4S_5) , 'Ichiharawase' (S_1S_8) , and 'Meigetu' (S_1S_8) among the first cross indicators (Castillo et al., 2001). These revisions raised some doubt about the S-geno- Received; December 9, 2003. Accepted; April 26, 2004. This work was supported by Grants-in-Aid for Young Scientists (B) (13760005 and 15780025) from the Ministry of Education, Science, Culture, Sports and Technology. ^{*} Corresponding author (E-mail: taka@kobe-u.ac.jp). types determined by these indicators. 'Kumoi' (Nashi nourin 1 gou) is a hybrid of 'Ishiiwase' and 'Yakumo' (S_1S_4) (Kajiura, 1955); it was determined as S_3S_4 by incompatibility with 'Tanzawa' (S_3S_4) (Ogaki, 1958). However, the S-genotype of 'Tanzawa' has been revised to S_4S_5 as described above. In this paper, we assigned the S-genotype of 'Kumoi' using the PCR-RFLP (S_1 to S_9) system, and confirmed its S-genotype with pollination tests. #### **Materials and Methods** #### Plant materials 'Kumoi', 'Tanzawa', Eight Japanese pears; 'Yakumo', 'Sekaiichi', 'Seigyoku', 'Ishiiwase', 'Okusankichi', and 'Doitsu', and two S-homozygotes; '312-6' (S_3S_3) and 'Nashi chuukanbohon nou 1 gou' $(S_4^{sm}S_4^{sm})$, were employed in this study. All trees were planted at the National Institute of Fruit Tree Science (NIFTS), National Agriculture and Bio-oriented Research Organization in Tsukuba, Ibaraki, Japan. 'Yakumo' and 'Doitsu' were pollinated with pollen from 'Sekaiichi', and hybrid seeds were obtained. ## PCR-RFLP (S_1 to S_9) analysis PCR-RFLP (S_1 to S_9) analysis was performed according to the procedure described by Takasaki et al. (2004). Genomic DNA was extracted from young leaves of each cultivar or embryos of the hybrid seeds by a cetyltrimethylammonium bromide method (Doyle and Doyle, 1987). PCR was conducted by using the Expand High-Fidelity PCR system (Roche Diagnostics) for the amplification of S-alleles. Genomic DNA (about 50 ng) was mixed with 0.3 μ M 'FTQQYQ' primer (5'-TTTA-'anti-(I/T) CGCAGCAATATCAG-3´), $0.3 \mu M$ IWPNV' primer (consists of a mix of 0.15 μ M 'anti-IIWPNV' (5'-AC (A/G) TTCGGCCAAATAATT-3'), and 0.15 μ M 'anti-TIWPNV' (5'-ACGTTTGGCCAA-ATAGTT-3')), 200 μ M dNTP, 1 \times PCR-buffer, 1U Taq polymerase, and distilled water to make a final volume of 30 μ l. PCR amplification was carried out for 10 cycles of denaturation for 15 sec at 94°C, annealing for 30 sec at 48°C and extension for 2 min at 70°C, following 20 cycles of denaturation for 15 sec at 94°C, annealing for 30 sec at 48°C, and extension for 2.5 min at 70°C, with a final extension for 7 min at 70°C. PCR products were digested with the following S-allelespecific restriction endonucleases; SfcI (S_1 specific) at 25°C, AfIII (S_2 specific), NruI (S_8 specific), NdeI (S_4 specific), AlwNI (S_5 specific), HincII (S_6 specific), PpuMI (S_3 , S_5 specific), and AccII (S_6 , S_7 specific) at 37°C, and BstBI (S_9 specific) at 65°C. PCR products and digested fragments were electrophoresed on 2% agarose gels. #### Pollination tests Pollination tests were performed at the orchards of NIFTS. About 15 clusters with 2 flowers at the balloon stage (1-2 days before anthesis) were carefully emasculated, pollinated with pollen of a cross indicator, then covered with paper bags to avoid contamination with a foreign pollen. Within 70 to 80 days after pollination, the number of fruit sets and viable seeds were counted. When fruit set was less than 30%, the cross was judged to be incompatible. ### **Results and Discussion** Terami et al. (1946) identified 'Tanzawa' as S_3S_5 . Whereas, Ogaki (1958) assumed 'Tanzawa' to be S_3S_4 and suggested that 'Kumoi' was S_3S_4 being incompatible with pollen from 'Tanzawa'. A part of the confusion raised from these earlier studies was resolved by recent pollination tests and PCR-RFLP analyses. 'Tanzawa' is compatible with 'Housui' (S_3S_5) (Hiratsuka et al., 1998) but incompatible with 'Kousui' (S_4S_5) (Castillo et al., 2001), revealing that its genotype is not S_3S_5 but S_4S_5 . Hence, its S-genotype was revised as S_4S_5 . With this reversion, S-genotype of 'Kumoi' may also need to be revised to S_4S_5 . However, 'Kumoi' was compatible with pollen from 'Tanzawa' (S_4S_5) and 'Seigyoku' (S_3S_4) , Table 1. Cross-compatibility of 'Kumoi' and 'Sekaiichi' with cross indicators in pollination tests. | Seed parent | Pollen parent | No. of pollinated flowers | No. of fruit set | Fruit set (%) | No. of Seeds per fruit 8.7 ± 0.3 | Compatibility ^v Compatible | |------------------------|---|---------------------------|------------------|---------------|--------------------------------------|---------------------------------------| | Kumoi | Tanzawa $(S_4S_5)^2$ | 34 | 26 | | | | | Kumoi | Seigyoku (S_3S_4) | 30 | 28 | 93.3 | 8.7 ± 0.2 | Compatible | | Kumoi | Sekaiichi | 30 | 0 | 0 | | Incompatible | | Sekaiichi | $312-6 (S_3S_3)$ | 30 | 0 | 0 | _ | Incompatible | | Yakumo (S_1S_4) | $312-6 (S_3S_3)$ | 30 | 28 | 93.3 | 7.5 ± 0.5 | Compatible | | Sekaiichi | Nashi chuukanbohon nou 1 gou $(S_4^{sm}S_4^{sm})$ | 30 | 0 | 0 | _ | Incompatible | | Okusankichi (S_5S_7) | Nashi chuukanbohon nou 1 gou $(S_4^{sm}S_4^{sm})$ | 30 | 28 | 93.3 | 4.1 ± 0.4 | Compatible | | Sekaiichi | Seigyoku (S_3S_4) | 30 | 27 | 90.0 | 8.3 ± 0.3 | Compatible | ² Parenthesises show the S-genotype determined previously by pollination tests. $^{^{\}mathrm{y}}$ Cross was considered incompatible when fruit set was less than 30% . indicating that 'Kumoi' was neither S_4S_5 nor S_3S_4 (Table 1). 'Kumoi' and its parents, 'Ishiiwase' (not determined by pollination tests) and 'Yakumo' (S_1S_4) , were analyzed by using PCR-RFLP (S_1 to S_9) system. PCR with 'FTQQYQ' and 'anti-(I/T) IWPNV' primers amplified products of ca. 1.3 kb and ca. 350 bp from these cultivars (Fig. 1). PCR product of ca. 1.3 kb from 'Ishiiwase' was digested with BstBI, and ca. 350 bp with PpuMI but not with AlwNI. Two products of ca. 350 bp from 'Yakumo' were digested with SfcI and NdeI. Two products of ca. 350 bp from 'Kumoi' were digested with SfcI and PpuMI but not with AlwNI. These digestion patterns of PCR products assigned 'Ishiiwase', 'Yakumo', and 'Kumoi' as S_3S_9 , S_1S_4 , and S_1S_3 , respectively (Table 2). The S_1S_3 of 'Kumoi' is one of the expected S-genotypes in the progenies between 'Ishiiwase' (S_3S_9) and 'Yakumo' (S_1S_4) . Using pollination tests, we tried to determine 'Kumoi' as S_1S_3 . However, 'Kumoi' showed male sterility and could not supply sufficient flowers because the 'Kumoi' planting at NIFTS was a preservation line and was maintained as a small tree by training and pruning. PCR – RFLP (S_1 to S_9) analysis provided us a Japanese pear cultivar with S_1S_3 , 'Sekaiichi', whose PCR products of **Fig. 1.** Gel plate showing amplified *S-RNase* genes from genomic DNA of four Japanese pears by using PCR with primers 'FTQQYQ' and 'anti- (I/T) IWPNV'. 1: 'Ishiiwase', 2: 'Yakumo', 3: 'Kumoi', 4: 'Sekaiichi'. ca. 350bp digested with SfcI and PpuMI but not with AlwNI (Fig.1, Table 2). 'Kumoi' was incompatible with pollen from 'Sekaiichi', indicating both cultivars have the same S-genotype (Table 1). By confirming that 'Sekaiichi' possesses S_1 and S_3 , we can prove that the S-genotype of 'Kumoi' is S_1S_3 . Cross indicators with S_IS_3 or the pollen from S_I and S_3 homozygotes were essential to determine 'Sekaiichi' to be S_IS_3 . There was S_3 homozygote, '312-6' (S_3S_3) , but no cross indicator with S_IS_3 and S_I homozygote. 'Sekaiichi' was incompatible with the S_3 pollen from '312-6', but 'Yakumo' (S_IS_4) was compatible (Table 1), confirming that 'Sekaiichi' possessed S_3 . Since 'Sekaiichi' was incompatible with the S_4^{sm} pollen from 'Nashi chuukanbohon nou 1 gou' but 'Okusankichi' (S_5S_7) was compatible (Table 1), it indicates that 'Sekaiichi' possesses either S_I or S_4 . These results proved that 'Sekaiichi' had S_3 and either S_I or S_4 . The compatibility between 'Sekaiichi' and 'Seigyoku' (S_3S_4) removed the possibility that 'Sekaiichi' was S_3S_4 , and estimated that 'Sekaiichi' is S_IS_3 (Table 1). To confirm the presence of S_I in 'Sekaiichi', we analyzed 22 hybrid seeds of 'Yakumo' \times 'Sekaiichi' and 23 seeds of 'Doitsu' \times 'Sekaiichi' by using PCR-RFLP (S_I to S_g) system. If 'Sekaiichi' possesses S_I , 'Yakumo' (S_IS_4) and 'Doitsu' (S_IS_2) should reject the S_I pollen from 'Sekaiichi', but accept the S_g pollen. The Fig. 2. S-genotype segregation patterns derived from hybrid seeds of 'Yakumo' \times 'Sekaiichi' (A) and 'Doitsu' \times 'Sekaiichi' (B). The number of hybrid seed is indicated under each S-genotype. **Table 2.** S – genotype assignments of four Japanese pears by using PCR – RFLP (S_1 to S_9) analysis. | | S – allele – specific restriction endonucleases | | | | | | | | | | |------------|---|--------------------------|-------------------------|------------|-------------------------|--------------------------|---------------------------|---|---|--------------| | Cultivar _ | ca. 1.3 kb | | 435 bp | ca. 350 bp | | | | PCR - RFLP | | | | | Afl II
S ₂ | Bst BI
S ₉ | Nru I
S ₈ | Sfc I | Nde I
S ₄ | Alw NI
S ₅ | Hinc II
S ₆ | <i>Ppu</i> MI <i>S</i> ₃ , <i>S</i> ₅ | Acc II
S ₆ , S ₇ | - S-genotype | | Ishiiwase | - | + | - | - | - | - | - | + | - | S_3S_9 | | Yakumo | and a | - | - | + | + | _ | _ | - | - | S_1S_4 | | Kumoi | - | - | - | + | - | - | | + | = | S_lS_3 | | Sekaiichi | _ | - | - | + | - | - | - | + | - | S_1S_3 | ^{+:} One of two S-RNase products digested with the restriction endonuclease. ^{-:} None of S-RNase products digested with the restriction endonuclease. hybrid seeds of 'Yakumo' \times 'Sekaiichi' possessed $12 S_1 S_3$ and $10 S_3 S_4$ seeds, whereas those of 'Doitsu' \times 'Sekaiichi' exhibited $10 S_1 S_3$ and $13 S_2 S_3$ seeds (Fig. 2). These segregations with two S-genotypes indicate the presence of S_1 in 'Sekaiichi'. In conclusion, our PCR-RFLP analyses, pollination tests and S-genotype segregations determined 'Sekaiichi' to be S_1S_3 , leading us to revise S-genotype of 'Kumoi' to S_1S_3 . With the S-genotype revision of cross indicators, S-genotypes determined by using these indicators should be re-examined by PCR-RFLP analysis and pollination. #### **Literature Cited** - Castillo, C., T. Takasaki, T. Saito, Y. Yoshimura, S. Norioka and T. Nakanishi. 2001. Reconsideration of S-genotype assignments, and discovery of a new allele based on S-RNase PCR-RFLPs in Japanese pear cultivars. Breed. Sci. 51: 5-11. - Castillo, C., T. Takasaki, T. Saito, S. Norioka and T. Nakanishi. 2002. Cloning of the S_8 -RNase (S_8 -allele) of Japanese pear (*Pyrus pyriforia* Nakai). Plant Biotech. 19: 1-6. - Doyle, J. J and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15. - Hiratsuka, S., T. Kubo and Y. Okada. 1998. Estimation of self-incompatibility genotype in Japanese pear cultivars by stylar protein analysis. J. Japan. Soc. Hort. Sci. 67: 491-496. - Ishimizu, T., K. Inoue, M. Shimonaka, T. Saito, O. Terai and S. Norioka. 1999. PCR-based method for identifying the S-genotypes of Japanese pear cultivars. Theor. Appl. Genet. 98: 961-967. - Ishimizu, T., Y. Sato, T. Saito, Y. Yoshimura, S. Norioka, T. Nakanishi and F. Sakiyama. 1996. Identification and partial amino acid sequences of seven S-RNases associated with self-incompatibility of Japanese pear, *Pyrus pyriforia* Nakai. J. Biochem. 120: 326-334. - Kajiura, M. 1955. Characteristics of new Japanese pear cultivar 'Kumoi'. Noko-to-Engei 10: 8-9 (In Japanese). - Machida, Y., Y. Sato, I. Kozaki and K. Seike. 1982. S-genotypes of several cultivars of Japanese pear and the question of the parents of 'Housui'. J. Japan. Soc. Hort. Sci. 51 (Suppl. 2): 58-59 (In Japanese). - Ogaki, C. 1958. The sterility-factors in new varieties of the Japanese pear (*Pyrus serotina* Rehd. *var. culta* Rehd.). Res. Rep. Kanagawa Agr. Sta. Hort. Inst. 5: 23-26 (In Japanese with English summary). - Saito, T., Y. Sato, Y. Sawamura, M. Shoda and K. Kotobuki. 2002. Studies on breeding of self-compatibility in Japanese pear 2. Characteristic of pollen of S_4^{sm} gene originated from 'Osanijisseiki'. J. Japan. Soc. Hort. Sci. 71 (Suppl. 2): 123 (In Japanese). - Sassa, H., H. Hirano and H. Ikehashi. 1992. Self-incompatibility-related RNases in styles of Japanese pear (*Pyrus serotina* Rehd.). Plant Cell Physiol. 33: 811-814. - Sato, Y., K. Abe, T. Saito, A. Kurihara and K. Kotobuki. 1991. Selection of self-compatible gene, S_4^{sm} homozygous seedlings in Japanese pear. J. Japan Soc. Hort. Sci. 60 (suppl. 2): 126-127 (In Japanese). - Takasaki, T., K. Okada, C. Castillo, Y. Moriya, T. Saito, Y. Sawamura, N. Norioka, S. Norioka and T. Nakanishi. 2004. Sequence of the S_9 -RNase cDNA and PCR-RFLP system for discriminating S_1 to S_9 -allele in Japanese pear. Euphytica 135: 157-167. - Terai, O., Y. Sato, T. Saito, K. Abe and K. Kotobuki. 1999. Identification of homozygotes of self-incompatibility gene (S-gene), as useful tools to determine the S-genotype in Japanese pear, *Pyrus pyriforia* Nakai. Bull. Natl. Inst. Fruit Tree Sci. 32: 31-38 (In Japanese with English summary). - Terami, H., H. Torikata and Y. Shimazu. 1946. Analysis of the sterility factors existing in varieties of the Japanese pear (*Pyrus serotina* Rehd. *var. culta* Rehd.). Studies Hort. Inst. Kyoto Imp. Univ. 3: 267-271 (In Japanese with English summary). 528 K. Okada, T. Takasaki, T. Saito, Y. Moriya, C. Castillo, S. Norioka and T. Nakanishi # ニホンナシ '雲井'の S遺伝子型の再検討 岡田和馬¹・高崎剛志²・齋藤寿広³・守谷友紀¹・Carlos Castillo ¹・乗岡茂巳⁴・中西テツ¹ ¹神戸大学大学院自然科学研究科 657-8501 神戸市灘区六甲台町 ²神戸大学農学部 657-8501 神戸市灘区六甲台町 ³独立行政法人農業技術研究機構果樹研究所 305-8605 つくば市藤本 ⁴大阪大学生命機能研究科 565-0871 吹田市山田丘 ### 商 要 以前の交配試験で S_3S_4 遺伝子型と決定されていたニホンナシ '雲井'の遺伝子型を、 $PCR-RFLP(S_1\sim S_9)$ 分析および交配試験により再検討した。 '雲井'は'清玉'(S_3S_4)と交雑和合性を示したので、 S_3S_4 ではないことが判明した。 $PCR-RFLP(S_1\sim S_9)$ 分析により、'雲井'の遺伝子型はまだ報告されていない S_1S_3 と推定された。 '雲井'が S_1 および S_3 対立遺伝子を持つことを示すためには更なる交配が必要であったが、'雲井'は十分な交配花数を供給できなかった。 '世界一'は $PCR-RFLP(S_1\sim S_9)$ 分析により S_1S_3 と推定され、'雲井'と交雑不和合性を示した。そこで、'雲井'の代わりに '世界一'に S_3 ホモ個体の花粉と、 S_4 だけではなく S_1 対 立遺伝子も認識することができる S_4^{sm} ホモ個体の花粉を交配した、'世界一'は S_3 花粉と S_4^{sm} 花粉の両方と交雑不和合性を示したことから,その遺伝子型は S_1S_3 あるいは S_3S_4 と予測された。PCR-RFLP $(S_1 \sim S_9)$ 分析から'独逸' (S_1S_2) ב世界一'の雑種種子は S_1S_3 と S_2S_3 の 2 つの遺伝子型に分離することが示され,'世界一'における S_1 対立遺伝子の存在が確認された。以上の結果から'世界一'が S_1 と S_3 対立遺伝子を持つことが明らかになり,'世界一'と交雑不和合性を示す'雲井'のS遺伝子型は S_1S_3 に修正すべきであると考えられた。