論文

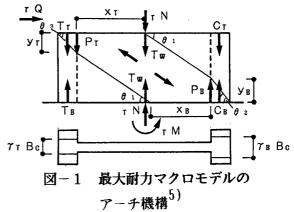
線材モデルによる RC 耐震壁の荷重-変形関係解析 [2093]

正会員 〇鈴木 紀雄(鹿島建設 小堀研究室) 井上 範夫 (鹿島建設 技術研究所) 正会員

1. はじめに

鉄筋コンクリート造耐震壁の最大耐力に関する理論的研究は、近年急速な進歩を遂げ、実際の 設計法にもそれらの成果が取り入れられている¹⁾。これに対し、変形に関する理論的研究はまだ 数も少なく²⁾³⁾、始まったばかりと言って良い状態である。筆者らは、これまでに、最大耐力ま での変形を計算する簡単な線材モデルについて報告した⁴⁾。今回は、これを発展させて、最大耐 カ以降の耐力低下域まで含めた荷重-変形関係を計算するモデルについて報告する。

2.解析方法


筆者らは、終局強度理論に基づいたRC耐震壁の最大耐力を算定するモデルを提案した $^{5)}$ 。こ れは、『マクロモデル』と称されるモデルの一つであり、力の釣り合い条件のみを満たすように、 あらかじめ仮定した機構の形状等を求めるものである。このモデルでは、最大耐力機構は、壁横 筋を通じて水平力が負担されるトラス機構と、図-1に示すようなコンクリートストラットで上 の加力梁から基礎へ水平力が直接伝えられるアーチ機構の、2つの機構の組み合わせと仮定して おり、解析結果として、最大耐力の他にストラットの寸法や柱の有効幅などが得られる。このモ デルでRC耐震壁の最大耐力を計算すると、トラス機構の寄与分は非常に小さく、アーチ機構の みでモデル化してもほとんど問題がない場合が多い。このことは、通常の試験体(シアスパン比

があまり大きくなく、曲げ補強筋が極端に多くな い壁)の実験では、最大耐力までは横筋の歪があ まり大きくならない事からも裏付けられる。

一方、実験では、コンクリートに圧壊が起こり 耐力低下が始まると横筋の歪が増加する傾向があ る。これは、最大耐力到達以降はトラス機構の寄 与分が大きくなることを意味している。

そこで、図-2のような、固定された基礎と剛 体の加力梁、および、これらを結ぶピン結合され

圧縮強度時歪以下のとき

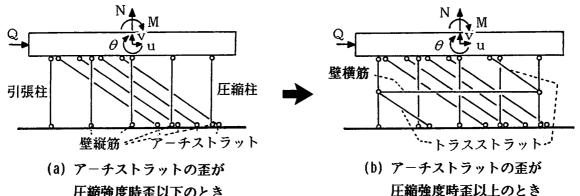


図-2 荷重-変形関係算定モデル

た線材で構成されるモデルを作成する。このモデルでは、変形の小さい間は同図(a) のように横筋は考慮しないものとし、アーチストラットの応力が圧縮強度に達した瞬間に、同図(b) のようにトラスストラットと壁横筋、及び、柱中間のヒンジを挿入して横筋が効くようにしている。このモデルの移行は、最大耐力以前では横筋は考慮せず、それ以後では考慮するために便宜的に行っているものであり、必ずしも実際の現象を忠実に表したものではない。

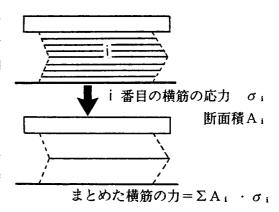
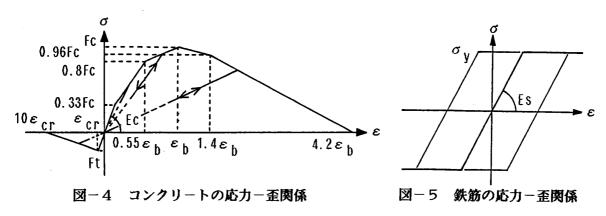


図-3 横筋のモデル化

各線材の寸法、位置などは、筆者らのマクロモデルの解析結果を利用して以下のように決める。


- (1) 圧縮柱: コンクリートと鉄筋から成る。コンクリートの断面積は、マクロモデルより得られた有効断面とする。鉄筋は、柱の全鉄筋量とする。
- (2) 引張柱:コンクリートと鉄筋から成る。断面積は圧縮柱と同じとする。
- (3) 壁縦筋:数本にまとめる。
- (4) アーチストラット: コンクリートから成る。幅および位置はマクロモデルより得られた値を 使い、数本に分割する。
- (5) 壁横筋:まず、数本にまとめる。そして伸び量の高さ方向の分布が、中央で最大、上下端でゼロの線形分布であると仮定して各位置での応力を求め、その総量を壁の高さ中央に集中させる(図-3)。ただし、長さは、挿入の瞬間に応力がゼロとなるように初期値を設定する。
- (6) トラスストラット: 剛部材と仮定する。横筋と同じ様に、長さは、挿入の瞬間に応力がゼロとなるように初期値を設定する。

壁の変位増分と外力増分は、部材の瞬間剛性を使用して以下の形で関係づけられる。

$$\begin{bmatrix} \Delta \mathbf{Q} \\ \Delta \mathbf{v} \\ \Delta \boldsymbol{\theta} \end{bmatrix} = (\mathbf{K}) \begin{bmatrix} \Delta \mathbf{u} \\ \Delta \mathbf{N} \\ \Delta \mathbf{M} \end{bmatrix}$$

ここで、Q: 水平力、N: 軸力、M: モーメント、u: 加力高さでの水平変位、v: 鉛直変位, $\theta:$ 回転変位、 Q_{T} 、 $N_{T}:$ 引張柱中間での水平力と軸力、 Q_{S} 、 $N_{S}:$ 圧縮柱中間での水平力と軸力、 u_{T} 、 $v_{T}:$ 引張柱中間での水平変位と鉛直変位、 u_{S} 、 $v_{S}:$ 、 圧縮柱中間での水平変位と鉛直変位、 $v_{S}:$ 、 上縮柱中間での水平変位と鉛直変位、である。計算は水平変位制御とする。軸力とモーメント、および、柱中間の力の増分は通常ゼロであるが、不釣り合いが生じたときには、これを解除する値を与える。

コンクリートの材料特性は、図ー4のように圧縮強度までは3折れ線、これ以降は2折れ線で表す。引張りを受けるコンクリート部材は柱のみであるが、テンションスティフニングを設定しておく。これは、ひび割れが発生したときの力の不釣り合いを軽減させるためのものであり、鉄筋降伏のかなり前に引張り応力がゼロとなるようにしてある。鉄筋は、図ー5のようなバイリニアー型の材料特性を持つものとする。解析は単調載荷とするが、塑性化の進行に伴う部材間の力のやりとりにより、応力が減少する部材が現れ得るので、材料特性に除荷部分を考慮してある。

3. 解析対象

このモデルの作成の仮定より、マクロモデルで解析したときに、最大耐力がアーチ機構のみで 負担されている壁に対象を限定する。また、マクロモデルで取扱いが明確となっていない連層耐 震壁(多点加力、一点加力に係わらず、中間梁があるもの)は除外する。さらに、両側に柱、或 いは、フランジ壁が付いているものとする。

4. 解析例

既往の実験試験体の中から、本モデルの対象の条件に合う31体の試験体(表-1)について、 解析を行った。

線材モデル作成のために行った、文献 5) に示したマクロモデルによる最大耐力解析結果を図 - 6 に示す。実験値の計算値に対する比の平均値は 1.004、変動係数は 0.109で、良好な対応を示している。

表一	1	解析対象

番号	試験体名	出典	実 験 者
1	P2004	6)	青山、加藤勝俣、細川
2	P2012		
3	P4012		
4	P2015-A	7)	青山、細川ら
5	W1-1	8)	東端、山口
6	W2-3	,	菅野ら
7	₩-1		谷、平松、望月
8	₩-2	9)	
9	₩-3		
10	₩-1		
11	₩-2	10)	谷、東海
12	₩-3		
13	₩-4		
14	HS-01		矢野、大森
15	HS-03	11)	宇佐美、最上
16	HS-07		杉田、山口ら

番号	試験体名	出典	実 験 者
17	1-L-M	12)	中村、真柄
18	1-S-M	,	後藤、城ら
19	H10N	13)	荒井、荒川
20	TH10N	10)	溝口、近藤ら
21	SF00-0.20		望月、城内
22	SF00-0.70	14)	涌井、寺岡
23	SF00-0.45N		田中ら
24	SR05BE04S5		
25	SR075BE04S5		本岡、安達
26	SR075BE02S10		
27	SR100BE04S5	15)	末次、浜原
28	SR100BE02S10		岡田
29	SR100BE02S5		
30	SR125BE04S5		
31	SR125BE02S10		

全試験体の荷重-変形関係を図-7に示す。また、解析結果のうち、例として試験体番号2の壁1体についてのみ、鉄筋の降伏、ストラットの圧壊などの進展状況を述べる。荷重-変形関係は、図-7(2)のように実験結果とよく一致しているが、柱主筋の降伏の起こる荷重も実験で130ton、解析では135tonとほぼ一致している。この試験体は、実験では柱の主筋降伏後に壁版のコンクリートが圧壊して破壊に至った。解析でも、柱の主筋降伏後に壁版の圧縮ストラットが最大強度に達して耐力が最大となり、本解析により破壊モードが得られることが分かった。また、実験結果として曲げ変形とせん断変形の比率が最

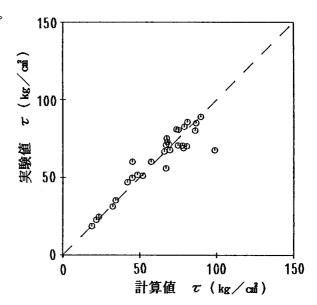


図-6 最大耐力の計算値と実験値の比較

大耐力時には約 0.2: 0.8であったことが示されている。本解析結果より最大耐力時のこの比率を求めると 0.18: 0.82 となり、実験結果とほぼ一致する。この解析により変形モードもとらえることができることが分かる。なお、解析では、高さ方向の曲率分布がモーメント分布に比例すると仮定して、曲げ変形とせん断変形を次のように定義した。

曲げ変形 : $u_{\mathfrak{b}} = (2/3) \cdot H \cdot \theta$ せん断変形 : $u_{\mathfrak{b}} = u - u_{\mathfrak{b}}$ 上式でHは、加力高さを表す。

この線材モデルの基となっているマクロモデルの耐力機構は、ひび割れが十分に入った状態を想定して仮定されたものである。したがって、実験である程度のひび割れが発生するまでは、解析の方が剛性が小さめに評価され、荷重が大きくなると、解析結果は実験結果に近づくことが予測される。図-7に示した解析例でもこの傾向が見られるが、最大耐力までは、解析結果と実験結果はかなり良い一致を示している。これに対して、最大耐力以降の解析結果と実験結果の一致度は、試験体によって異なる。概して、実験結果にある程度の靭性が認められる試験体では対応が良く、靭性が小さい試験体では対応が良くない傾向がある。実験の包絡線に見られる急激な耐力低下は、最大耐力時の変形での繰り返しの影響など、他の要因も考えられる。また、このモデルでは、最大耐力以後の耐力低下は、圧縮ストラットのコンクリートが歪軟化域に入ることにより表されているが、実験では、これ以外の耐力低下機構も考えられよう。これらの点については、今後の検討課題としたい。

5. まとめ

単純な線材モデルにより、耐震壁の荷重-変形関係を解析的に求めることを試みた。このモデルは、線材の大きさや位置を決定するのに、最大耐力を求めるためのマクロモデルの解析結果を利用する点に特徴がある。このモデルによると、耐震壁の耐力、耐力までの変形、破壊モード、曲げとせん断の変形成分を良い精度でとらえることができた。また、最大耐力以後のモデルに横筋の効果を考えることにより、かなりの数の試験体で最大耐力以降の荷重-変形関係もとらえることができた。ただし、この横筋のモデル化は便宜的なものであり、今後の検討が必要である。
〈謝辞〉:本研究に対し、貴重な御意見を頂いた鹿島建設技術研究所の大森信次博士、高橋敏夫氏、宇佐美滋氏、丸田誠氏に感謝致します。

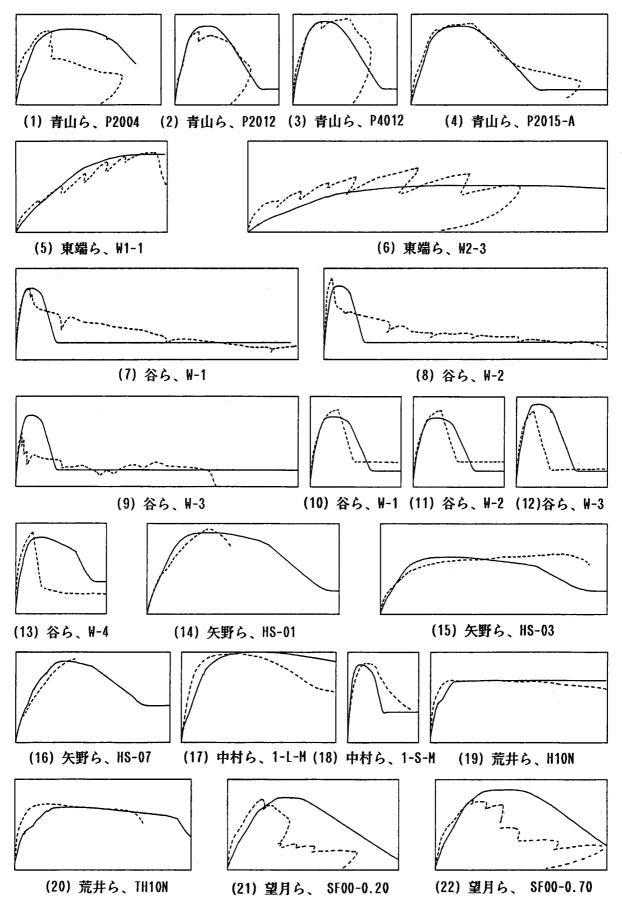
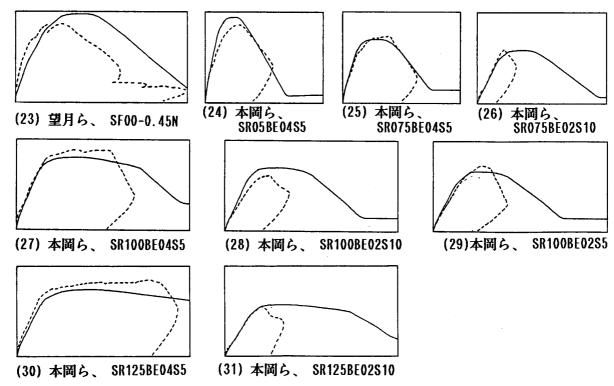



図-7 荷重-変形関係の計算値と実験値の比較

★実線が解析結果、破線が実験結果を表す。★横軸が水平変形、縦軸が水平力を表す。★実験、及び、解析より得られる荷重-変形関係の形状を比較することが目的なので、軸の目盛りは記入していない。

図-7 (続き) 荷重-変形関係の計算値と実験値の比較

参考文献 『大会』-日本建築学会大会学術講演梗機集、『論報』-日本建築学会論文報告集、『JCI』-日本 コンクリート工学協会年次講演会、『支部研』-日本建築学会支部研究報告集 を表す。

- 1) 日本建築学会、『鉄筋コンクリート造建物の終局強度型耐震設計指針(案)・同解説
- 2) 壁谷沢寿海ら、『鉄筋コンクリート造耐震壁の終局強度及び**靭性の評価法』、第10回**JCI、63年 6月、pp.361 ~ 366
- 3) 平石久廣、『曲げ降伏の鉄筋コンクリート造耐震壁の復元力特性に関する解析的研究』、論報、第 347号、 昭和60年 1月、pp.95 ~ 101
- 4) 鈴木紀雄ら、『マクロモデルを利用したRC耐震壁の最大耐力近傍での変形解析』、63年関東支部研、pp. 189~192
- 5) 鈴木紀雄ら、『柱型を考慮したRC耐震壁の終局強度モデル』、第10回JCI、昭和63年 6月、 pp.373 ~ 378
- 6) 青山博之ら、『増設R C耐震壁の耐力と変形能力に関する実験的研究(その1)(その2)』、57年大会、pp. 1407 ~1410
- 7) 青山博之ら、『既存鉄筋コンクリート建物の耐震補強工法に関する研究(その1)』、60年大会、DD.81~82
- 8) 東端ら、『曲げ、せん断、軸力を受ける鉄筋コンクリート耐震壁に関する実験的研究(その1)~(その3)』、 50年大会、pp. 1189 ~1192、51年大会、pp. 1593 ~1594
- 9) 谷資信ら、『鉄筋コンクリート耐震壁の崩壊過程に関する実験的研究』、48年大会、pp. 1303 ~1304
- 10) 谷資信ら、『鉄筋コンクリート耐震壁に関する実験的研究』、50年大会、pp. 1175 ~1176
- 11) 矢野明義ら、『太径鉄筋継手の構造特性に関する実験研究(その3)~(その5)』、59年大会、pp.1769~1774
- 12) 中村庄湛ら、『鉄筋コンクリート造耐震壁の変形成分について(その1)、(その2)』、59年大会、pp. 1841 ~1844
- 13) 荒井康幸ら、『鉄筋コンクリート連層耐震壁の耐力と変形性状に関する実験的研究』、第10回JCI、昭和63年 6月、pp. 391~396
- 14) 望月重ら, 『SFRC部材のせん断挙動に関する研究(その14)、(その15)』、60年大会、pp. 319 ~322
- 15) 本岡順二郎ら、『鉄筋コンクリート造耐震壁の破壊機構に関する実験的研究(その1)、(その2)』、 59年大会、pp. 1937 ~1940