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Calculating response functions in time domain with
non-orthonormal basis sets

Toshiaki Iitaka and Toshikazu Ebisuzaki
Computational Science Division, RIKEN

We extend the recently proposed order-N algorithms for calculating linear- and nonlinear-response functions in time
domain to the systems described by nonorthonormal basis sets.

Introduction

As first-principles calculations become more and more impor-
tant in various research fields such as physics, chemistry, ma-
terials science, and recently geology and biology, the demand
for calculation of larger and larger systems is growing rapidly.
One of the answers to this demand is the so-called order-N
methods, which compute the electronic band structure, the
total energy, and other quantities with computational time
and storage proportional to N , the number of the atoms in
the system. For very large systems, these methods are much
faster than the conventional diagonalization methods, which
require computational efforts proportional to N3.

The order-N methods may be classified into two steps. The
first step is minimizing the total energy to obtain the ground
state of the self-consistent one-particle Hamiltonian. The sec-
ond step is extracting dynamic properties such as linear and
nonlinear-response functions from this Hamiltonian. While
the first step has been extensively studied 1–8) and also com-
prehensive reviews are available,9,10) the second step has been
studied by only few papers,11–15) including the particle source
method 16,17) and the projection method,18–21) which use the
numerical solution of the time-dependent Schrödinger equa-
tion,22) and projected random vectors.23)

The purpose of this Rapid Communication is to extend the
formalism of the projection method to nonorthonormal basis
sets, 24–28) on which many order-N total energy minimiza-
tion methods are built, so that the full ab initio calculation
from the total energy minimization to the response function
is possible.

Nonorthonormal basis set

In this section, let us review the description of a system with
a Hilbert space spanned by finite numbers of linearly indepen-
dent nonorthonormal bases {|ϕα〉}. We distinguish a vector
in the Hilbert space from its components by using the braket
notation for a vector in the Hilbert space and the tensor no-
tation 24) and the matrix notation 26) for its components.

The overlap matrix is defined as a Hermitian matrix with
subscripts,

Sαβ ≡ 〈ϕα|ϕβ〉 = S∗
βα. (1)

Then the inverse matrix is defined as a matrix with super-
scripts that satisfiesX

β

�
S−1�αβ

Sβγ = δα
γ , (2)

where δα
γ is Kroneker’s delta. Then the dual basis set 〈ϕα|

is defined by

|ϕα〉 =
X

β

|ϕβ〉
�
S−1�βα

, (3)

which is used only in formal description, but not in real nu-
merical calculations. These two basis sets are biorthogonal
and bicomplete,

〈ϕα|ϕβ〉 =
X

γ

(S−1)αγSγβ = δα
β , (4)

X
α

|ϕα〉〈ϕα| = I, (5)

where I is the identity operator.

An arbitrary state |φ〉 can be expressed in original or dual
basis set,

|φ〉 =
X

α

φα|ϕα〉 =
X
α,β

φα|ϕβ〉Sβα =
X

β

φβ|ϕβ〉, (6)

where φα and φα are the components in each basis set, which
are related to each other by

φβ =
X

β

Sβαφ
α. (7)

The components of |φ〉 are represented by a column vector
� =

�
φ1, φ2, · · · , φN

�t
, where t indicates the transpose of

a vector or matrix, and its dual 〈φ̃| is represented by a row
vector �̃ = [φ∗

1, φ
∗
2, · · · , φ∗

N ] .

The lower-indexed components of an operator, the Hamil-
tonian Ĥ for example, are defined in the original basis set
by

Hαβ = 〈ϕα|Ĥ |ϕβ〉. (8)

Then the mixed-indexed components are defined by

Hα
β = 〈ϕα|Ĥ |ϕβ〉 =

X
γ

(S−1)αγHγβ . (9)

The manipulation of state vectors and operators is most con-
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veniently expressed in the mixed representation. For exam-
ple, |ψ〉 = Ĥ |φ〉 becomes ψα =

P
β Hα

βφ
β. Therefore, we

can introduce the matrix notation,  = H� where the bar
over the matrix symbol indicates the raise of the first index
H = {Hα

β}. Then Eq. (9) is rewritten as

H = S−1H, (10)

where H is the matrix {Hαβ}. Now H is not Hermitian ma-
trix anymore, since

H
†
=
�
S−1H

�†
= H† �S−1

�†
(11)

= HS−1 = SHS−1 �= H. (12)

Note that the full calculation of S−1, which costs O(N3) CPU
time, is not necessary to obtain a good approximant of H
from a sparse H.25,26) One of the advantages of H over H is
that power of Ĥ is easily calculated without explicitly multi-
plying S−1,26)

Ĥn|φ〉 =
X

β

Ĥn|ϕβ〉φβ =
X

α

X
β

|ϕα〉(Hn
)αβφ

β (13)

=
X

α

|ϕα〉
�
H

n
�
�α

. (14)

The matrix form of the eigenvalue problemX
β

Hα
βφ

β = Eφα (15)

becomes

H� (Eβ) = Eβ� (Eβ) (16)

and the dual of Eq. (16) becomes

�̃ (Eβ)H = Eβ�̃ (Eβ). (17)

The eigenvectors, Eqs. (16) and (17), define the eigenstates

|Eβ〉 =
X

α

|ϕα〉φα(Eβ), (18)

〈Ẽβ| =
X

α

φ̃α(Eβ)〈ϕα|, (19)

which satisfy the biorthonormality and the bicompleteness

〈Ẽα|Eβ〉 = δαβ, (20)X
α

|Eα〉〈Ẽα| = I. (21)

Random vectors

Let us define random states29,30) by

|Φ〉 ≡
X

β

|ϕβ〉Φβ, (22)

〈Φ̃| ≡
X

α

Φ̃α〈ϕα|, (23)

where {|ϕβ〉} and {〈ϕα|} are the basis set used in the com-
putation and its dual basis set, respectively.

Their components

Φα = Φ̃∗
α = ξα (24)

are the pseudorandom numbers that satisfy the statistical
relation

〈〈 ξ∗αξβ 〉〉 = δαβ (25)

where 〈〈 · 〉〉 indicates the statistical average. Note that the
transformation of the random vector to its dual does not con-
tain the overlap matrix S in Eq. (24), unlike the general rule
for usual vectors in Eq. (7).

These random vectors may be also expressed by the eigen-
states of H by substituting Eq. (21) into Eqs. (22) and (23),

|Φ〉 =
X
βγ

|Eβ〉〈Ẽβ|ϕγ〉ξγ =
X

β

|Eβ〉ζβ, (26)

〈Φ̃| =
X
αδ

ξ∗δ 〈ϕδ|Eα〉〈Ẽα| =
X

α

ζ∗α〈Ẽα|, (27)

where

ζβ =
X

γ

〈Ẽβ|ϕγ〉ξγ , (28)

ζ∗α =
X

δ

ξ∗δ 〈ϕδ|Eα〉. (29)

Although we do not know the actual value of ζ∗α, ζβ, 〈Ẽβ|,
or |Eα〉, we can derive the statistical relation of the random
variables ζβ as follows:

〈〈 ζ∗αζβ 〉〉 =
X

γ

X
δ

〈ϕδ|Eα〉〈Ẽβ|ϕγ〉 〈〈 ξ∗δ ξγ 〉〉

=
X

γ

〈Ẽβ|ϕγ〉〈ϕγ |Eα〉 = 〈Ẽβ|Eα〉 = δαβ. (30)

This relation is very important, as we will see later.

One of the useful features of random states is that the expec-
tation value of an operator X̂ in terms of the random states
gives trace of the operator,DD

〈Φ̃|X̂ |Φ〉
EE
=
X
α,β

〈〈ξ∗αξβ〉〉 〈ϕα|X̂|ϕβ〉 =
X

α

Xα
α

which is identical to the trace calculated with an orthonormal
basis set |n〉 becauseD

X̂
E
= tr[X̂ ] =

X
n,α,β

〈n|ϕα〉Xα
β〈ϕβ |n〉 (31)

=
X
α,β

〈ϕβ |ϕα〉Xα
β =

X
α

Xα
α. (32)

Projected random vectors

Then the projected random vectors are defined by

ΦEf = θ(Ef − H)Φ =
X
m

cm m (33)

Φ̃Ef = Φ̃ θ(Ef − H) =
X
m

cm ̃ m (34)

where cm are the coefficients for the Chebyshev polynomial
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expansion of the step function 12,31)

θ(x) =

(
0 (x < 0)

1 (x > 0).
(35)

The random vectors multiplied by the Chebyshev polynomial
Tm(H)

 m = Tm(H)Φ , (36)

 ̃ m = Φ̃ Tm(H), (37)

are calculated by using the recursion formulas

 m+1 = 2H m − m−1, (38)

 ̃ m+1 = 2 ̃ mH −  ̃ m−1. (39)

The coefficient vectors, Eqs. (33) and (34), define the pro-
jected random states

|ΦEf 〉 ≡
X

α

|ϕα〉
�
ΦEf

�α
=

X
Eβ≤Ef

|Eβ〉ζβ, (40)

〈Φ̃Ef | ≡
X

α

�
Φ̃Ef

�
α
〈ϕα| =

X
Eβ≤Ef

ζ∗β〈Ẽβ|. (41)

One of the useful features of projected random states is that
the expectation value of an operator X̂ with them gives the
trace of the operator over the Fermi occupied states,DD

〈Φ̃Ef |X̂ |ΦEf 〉
EE
=

X
Eα,Eβ ≤Ef

〈〈ζ∗αζβ〉〉 〈Ẽα|X̂ |Ẽβ〉 (42)

=
X

Eα≤Ef

Xα
α, (43)

where the statistical relation Eq. (30) is used.

Time evolution

The time-dependent Schrödinger equations corresponding to
the eigenvalue Eqs. (16) and (17) become

+i
d

dt
� (t) = H� (t), (44)

−i
d

dt
�̃ (t) = �̃ (t)H. (45)

The formal solutions of the time-dependent equations become

� (t) = e−iHt
� (t = 0), (46)

�̃ (t) = �̃ (t = 0)e+iHt. (47)

For numerically calculating the time evolution of the coeffi-
cients, we use the leap frog method,22)

� (t+∆t) = −2i∆tH� (t) + � (t−∆t), (48)

�̃ (t+∆t) = +2i∆t�̃ (t)H+ �̃ (t−∆t), (49)

where ∆t is the time step.

Linear response function

When an impulse of perturbation Âδ(t) is applied to the
system described by the Hamiltonian Ĥ , the time evolu-

tion of the wave function is described by the time-dependent
Schrödinger equation in the matrix form

i
d

dt
Φ (t) =

�
H+Aδ(t)

	
Φ (t), (50)

−i
d

dt
Φ̃ (t) = Φ̃ (t)

�
H+Aδ(t)

	
, (51)

where A = S−1A is the matrix of Â in the mixed represen-
tation. Note that the impulse Aδ(t) contains all frequency
components Ae−iωt. Assuming that the system was in a pro-
jected random stateΦ (0) = ΦEf before the perturbation, the
wave function after the perturbation (t > 0) becomes

Φ (t) = Φ (0)(t) + δΦ (t), (52)

Φ̃ (t) = Φ̃
(0)
(t) + δΦ̃ (t), (53)

where

Φ (0)(t) = e−iHtΦEf , (54)

δΦ (t) = (−i)e−iHtθ(H − Ef )AΦEf , (55)

and

Φ̃
(0)
(t) = Φ̃Ef e

+iHt, (56)

δΦ̃ (t) = (+i)Φ̃Ef Aθ(H − Ef )e
+iHt (57)

are the time evolution of unperturbed and perturbed vectors.
In Eqs. (55) and (57), projection operators θ(H − Ef ) have
been introduced to ensure that the excited states should be
higher than the Fermi energy.

The linear response of an observable B̂ from all electrons is
calculated as

δB(t) = 2 Re
n
δΦ̃Ef (t)BΦ

(0)
Ef

(t)
o
, (58)

where B = S−1B is the matrix of B̂ in the mixed represen-
tation. Then the Fourier transformation of δB(t) gives the
linear response of the noninteracting many-electron system
to the perturbation Ae−iωt,

χBA(ω + iη) =

**Z T

0

dt e+i(ω+iη)tδB(t)

++
, (59)

where the imaginary part of frequency η is introduced to limit
the integration time to a finite value T = − ln δ/η, with δ be-
ing the relative numerical accuracy of Eq. (59). Here 〈〈 · 〉〉
indicates the statistical average.

Summary

We presented a generalized version of the projection method
for linear and nonlinear response functions developed by
Iitaka and others.18–21) The method can now be used with
nonorthonormal basis sets such as local basis sets, for order-
N total energy calculations. As a result, it became possible to
calculate the response functions of very large systems by ap-
plying the projection method to the optimized Hamiltonian
with a local nonorthonormal basis set.

One of the authors (T.I.) would like to thank Professor
Ordejón for useful discussions at the RIKEN Symposium.
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