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Elastic properties as a pointer to phase transitions
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Calculating phase boundaries from energy differences is a major application of DFT. The main obstacle to a predictive
capacity is lack of knowledge of candidate structures. The three approaches to finding them are: educated guesswork,
molecular dynamics to simulate the transition mechanism or examination of harmonic properties. Here, we utilise
harmonic properties as symmetry signposts toward candidate structures. Mechanical instabilities of the ‘ideal’ crystal
structure, are shown to indicate incipient instabilities in lawsonite, perovskites and stishovite. In MgO and CaO,
strongly first order systems, softening of particular elastic moduli indicates the symmetry which is broken in forming
the high pressure phase.

Introduction

A great advantage of computer simulation is its capacity to
study extreme conditions beyond what is tractable experi-
mentally. Nowhere is this more relevant than in density func-
tional studies of materials, under extremely high pressure and
temperature, such as those present deep in the earth.

The central difficulty faced in trying to study the Earth’s
mantle and core is that of conducting experiments which will
reveal anything relevant to the behaviour of materials under
the conditions of extreme temperature and pressure preva-
lent there. High pressure and temperature anvils which can
attain these conditions are now becoming widely available,
but these still leave open the problem of actually perform-
ing experiments on the sample in situ- for which a trans-
parent anvil material such as diamond1) is essential. As a
consequence much of what is known from experiments about
mantle minerals is deduced from samples recovered back to
ambient conditions, in some cases naturally e.g . as inclusions
in diamonds.

Computer simulation offers an attractive way of avoiding
these practical problems. If a method could be shown to be
reliable at predicting thermodynamic properties of minerals
at any temperature and pressure, many gaps in our current
knowledge could be plugged. Of particular interest are where
and whether phase transitions occur, since these give rise to
density discontinuities which can account for known seismic
effects, or even alter the convection patterns in the mantle.

The methodologies of ab initio simulation using large scale
density functional calculations are reviewed extensively in
this volume and elsewhere. This article concentrates on ap-
plications of the method to phase transitions in minerals.

Although some progress has been made in calculating free
energy from molecular dynamics,2) static relaxation remains
the mainstay of ab initio simulation of the enthalpy of struc-
tures. These calculations evaluate the energy and stability
of an ‘ideal’, zero temperature crystal in which all atoms are
located on their lattice positions. Pressure induced phase
transitions can be reliably predicted by evaluating the en-
thalpy (total energy plus PV) for each phase as a function
of pressure: the volume is that which gives the minimum
enthalpy.

In order to determine minimum enthalpy for a complex crys-
tal structure high pressure, it is necessary to minimise the en-
thalpy with respect to both internal degrees of freedom and
unit cell parameters. This can be done within the density
functional framework if forces and stresses can be evaluated.
Since strong coupling often exists between internal and unit
cell degrees of freedom actually performing this relaxation
can be slow.

At any pressure, the stable structure is the one which has the
lowest minimum enthalpy. The phase transition pressure can
also be deduced from the common tangent between curves
on a total energy vs volume graph corresponding to the two
phases. The transition pressure is given by

PT = (F
∗
2 − F ∗

1 )/(V
∗
1 − V ∗

2 )

where F1 is the Helmholtz free energy for phase 1 (this is
identical to the total energy for T = 0). The temperature
dependence of the free energy difference determines the slope
of the phase boundary in PT space. The ∗ indicates that
the quantity is evaluated for the values of internal coordi-
nates and unit cell parameters which minimise the enthalpy
at PT in each phase. Since these quantities depend implic-
itly on PT , one cannot evaluate PT directly from the above
equation. Usually equations of state for the two phases are
calculated separately, and then compared.

What is a phonon frequency?

In comparing calculated and measured phonons, one must be
careful about what one is looking at. A phonon is a quan-
tised amount of energy associated with a normal mode of a
crystal. The phonon frequency is the frequency of the lattice
oscillation associated with that mode.

Theoretical calculations of phonons are often made using lat-
tice dynamics, a well known method laid out by Born and
Huang 3) which relates the frequency to the second derivative
of the potential energy surface. This contains the implicit
assumption that the phonons are simple harmonic modes.
By contrast, experimental probes of phonons (e.g . inelastic
neutron scattering) couple directly to the frequency. If the
crystal structure is harmonic, these are equivalent, but soft
modes are by definition anharmonic. Where dramatic differ-
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ences exist between the calculated and measured frequencies,
the cause is often anharmonicity and an incipient phase tran-
sition may be indicated.

In the extreme case (see e.g . Fig. 1 for the T1N phonon
mode in zirconium) electronic structure calculation may give
an imaginary phonon frequency indicating that the ‘ideal’
structure is unstable. In such cases the observed structure
is stabilised by high temperature and will undergo a phase
transition on cooling, to a low temperature phase whose sym-
metry differs by the symmetry of the imaginary mode. In the
case of zirconium, this transition is from the bcc structure to
hcp.

Ab initio phonon frequencies can be calculated in two ways.
In linear response theory a small perturbation of the ionic po-
sitions probes directly the second derivative of the potential
energy surface. Here we use an alternative approach in which
the restoring forces are calculated by a finite displacement of
magnitude comparable to the temperature of interest: this
enables us to incorporate some of the effects of anharmonic-
ity.4)

Fig. 1. Phonon dispersion curves in bcc zirconium. The upper figure
shows data from neutron scattering (circles), molecular dynamics at
1400K (dashed line) and lattice dynamics (solid line). The lower
figure shows, for the N-point phonon, the DFT calculated energy
as a function of phonon amplitude at various lattice parameters (a,
quoted in Angstroms). The phonon amplitude is defined as the max-
imum displacement of the zirconium atom from its ‘ideal’ position
expressed as a fraction of lattice parameter. The arrow shows the
soft phonon. Note that as the volume is reduced, the energy bar-
rier reduces, showing that the transition temperature is reduced with
increasing pressure.5)

Mechanisms for phase transitions: phonons and elastic con-
stants

The soft phonon phase transition is one of the best estab-
lished mechanisms by which a crystal structure can change.
In the pressure-induced case, the frequency of a given vibra-
tion in the lattice goes to zero as the transition is approached:
zero frequency implies that the lattice structure is unstable,
and will transform, typically to a lower symmetry phase.

An example of this is provided by the stishovite-to-CaCl2
structural transition in SiO2. Here DFT calculation at high
pressure shows the softening of the B1g phonon mode, reach-
ing zero at 86GPa. This appears to be at variance with the
experimental data 6) which shows a transition at 50± 3GPa.

In fact, it is the physics which is lacking here: the B1g mode
is coupled by symmetry to the (C11 −C12)/2 shear modulus.
DFT calculations of this quantity show that it does indeed
go to zero at 49GPa (see Fig. 2).

Fig. 2. Top: Calculated pressure variation of the calculated elastic mod-
uli in stishovite, in the CaCl2 structure and in columbite. The dashed
lines show the tetragonal shear modulus which corresponds to the
shear instability observed on the rutile-CaCl2 transition. Bottom:
Calculated phonon frequencies in stishovite, in the CaCl2 structure,
calculated using the method of finite displacements, and labelled by
their symmetry as deduced from the calculation. These calculations
were performed by B. B. Karki.7)
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Although a zero frequency phonon implies a structural insta-
bility, only certain specific combinations of elastic moduli –
those corresponding to bulk moduli, tetragonal and trigonal
shears – give rise to structural instabilities. While unusual,
materials with negative elastic moduli do exist.

Signposts for phase transitions

Although in stishovite DFT elucidates both the existence and
the mechanism of the transition, in other materials softening
elastic constants only suggest possible other phases: For ex-
ample CaO is known to undergo a B1-B2 transition, and by
analogy one might expect MgO to behave similarly. If one
draws the unit cells of these structures, a possible path be-
tween them can be attributed to a strain corresponding to
the C44 elastic constant. Calculating C44 in CaO as a func-
tion of pressure (Fig. 3) shows that C44 does indeed soften
(in both B1 and B2) as the transition is approached. But it
does not go to zero (i.e . it remains mechanically stable) until
far beyond the transition pressure.

Repeating the same calculation for MgO leads to an almost
identical graph for the softening of C44 in B1, with the dif-
ference that the pressures involved are almost experimentally
intractable-over a thousand GPa. This gives a further strong
hint that B2 is worth considering as a potential high pres-
sure phase, and indeed calculation shows softening of the B2
elastic constant toward the transition (Fig. 3).

Fig. 3. Calculated C44 elastic constants for MgO and CaO in the B1
(NaCl) and B2 (CsCl). structures.

Calculating the energy along the path itself, by applying ex-
tremely large trigonal shears and calculating the energy, 7)

shows a large barrier to transition, indicating that the transi-
tion mechanism is not a simple martensitic deformation along
it. The elastic modulus calculation here shows the symmetry
of the incipient instability. It does not predict the transition
pressure: to do this separate calculations of the enthalpy of
the two phases have been done.7) The transition pressures
deduced from these calculations of thermodynamic stability
are denoted PT in Fig. 3.

Temperature

Temperature also provides a mechanism for soft mode phase
transitions. Temperature induced transitions are harder to
deal with in calculations than pressure induced ones because

they do not correspond to the appearance of a mechanical
instability in the ‘ideal’ structure (as defined in the introduc-
tion above). Rather, at some temperature, the structure has
sufficient energy to overcome a total energy barrier between
two (or more) symmetry-related variants of the low tempera-
ture structure such that the average (observed) structure has
higher symmetry.†

Lawsonite provides an example of a temperature-induced
transition. Lawsonite CaAl2 (Si2O7)(OH)2.H2O, a mineral
which plays an important role in subduction of water into
the earth’s mantle.8) It is a framework mineral based on AlO6

octahedra and Si2O7 groups, with water and calcium coab-
sorbed into cavities within the framework. Total energies
have been calculated for three ‘ideal’ crystal structures cor-
responding to those observed at increasing temperature. A
plot of energy against volume (Fig. 4) shows that only the
lowest symmetry P21cn structure is stable at any pressure.

P21cn has no soft modes. However, the high symmetry struc-
tures do have soft modes with lowering temperature: their
‘ideal’ structures are mechanically unstable, showing that the
observed structure is stabilised by thermal effects. Moreover,
the low symmetry structure also has the lowest volume, show-
ing that its range of temperature stability increases as the
pressure increases. In practice, calculations suggest that the
low temperature/low symmetry phase will not be observed
under mantle conditions.

Perovskite (MgSiO3),
9) which is believed to be the most

abundant mineral in the mantle, exhibits similar behaviour.
Here again the high-temperature, high-symmetry structure
is mechanically unstable, but has been shown to exist in

Fig. 4. Graphs of energy against pressure for ‘ideal’ structures of law-
sonite. As is conventional in crystallography, the phases are labelled
by their space group symmetries. The fact that the graphs do not
cross shows that the Cmcm and Pmcn phases exist only at high
temperature. The steeper slopes of Cmcm and Pmcn at lower vol-
umes show that these phases are less favoured (lawsonite will have a
higher transition temperature) at high pressure. These calculations
were performed by P. K. Ahluwalia.

† The Landau picture of this phenomenon concentrates on the free
energy rather than the total energy. The free energy barrier does
vanish at the transition.
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Fig. 5. Left: Graph showing energies, forces and stresses plotted against the amplitude of the with the soft
mode (technically, the M2 rotation mode) in ‘ideal’ perovskite. The phonon amplitude is measured by
the fractional displacement of the oxygen atoms. Right: Schematic of the rigid unit mode picture: the
cell volume is reduced if the rigid SiO6 octahedra maintain their volume as they rotate. Calculations were
performed by M. C. Warren.

ab initio molecular dynamics simulations. Static calcula-
tions show that two distinct phonons are unstable. As
the temperature is reduced, first one and then another of
the temperature-stabilised phonons ‘freezes-in’, giving rise to
changes in crystal symmetry.

Figure 5 shows the energetics of the coupling between phonon
and elastic constant in perovskite. The phonon amplitude
is measured by the fractional displacement of the oxygen
from its symmetric position. Two cases are considered: the
‘phonon’ in which total energy calculations are carried out
without relaxation of the unit cell, and the ‘rigid unit mode’
in which the unit cell is allowed to relax while the volume
of the SiO6 octahedra is preserved.

10) The first is the appro-
priate boundary condition for comparison with, e.g ., inelas-
tic neutron scattering experiments in the high temperature
phase, but a combination of the two is required for predicting
the phase transition.

Figure 5 also shows that the minimum energy configuration
corresponds to a non-zero value of the phonon amplitude:
this means that the ideal structure is mechanically unsta-
ble. The stress graph (5c) shows that exciting the volume-
conserving phonon results in a (bulk) stress on the sample.
The induced stress is second order in the phonon amplitude,
however it must be relaxed in the phase transition, and this
relaxation gives rise to the volume change.

The ‘rigid unit’ picture gives a physical interpretation of
the phenomenon: SiO6 octahedra are treated as rigid ob-
jects with hinged joints at each corner. Although this is an
qualitatively appealing picture, as Fig. 5 shows the residual
stresses are larger than for the phonon model indicating that

the quantitative change in volume at the transition is smaller
than the ‘rigid unit’ model would imply.

The calculations suggest that the low temperature structure
is likely to be most stable under mantle conditions, however
the models for converting from phonon freqencies to phase
transition temperatures currently only provide a reliable up-
per bound, so the possibility that the transformation could
occur has not been ruled out.

Thus in both lawsonite and perovskite, harmonic calculation
of the phonon frequencies in the ideal structure of the high
temperature phase reveals that they are imaginary: the in-
stability can be taken as a sign that the crystal structure will
undergo a phase transition at low temperature.

Summary

We have shown that, across a wide range of systems, calcu-
lation of static harmonic properties can give an indication of
the phase behaviour of minerals. For pressure driven transi-
tions where the transition mechanism is related to a struc-
tural instability, the transition pressure can be accurately
calculated by these means. Even when the mechanism is
not a soft mode one, the behaviour of the elastic properties
can give an indication of the symmetry of the high pressure
phase: once the candidate structure has been deduced by
this mechanism, the transition pressure can be calculated
by enthalpy comparison between the two phases. Finally,
temperature driven solid-solid phase transitions can be de-
duced from the existence of unstable phonon modes in the
‘ideal’ high temperature structure or extremely anharmonic
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behaviour of phonon modes in the ‘ideal’ low temperature
structure.

Determining both temperature and pressure stability is cru-
cial in determining whether a mineral will actually be ob-
served in the mantle. As a rule of thumb, most ‘frozen in’
soft modes in silicate minerals arise from a buckling of the
framework, with a consequent reduction in volume: thus the
low temperature phase is also a high pressure phase.‡ Con-
sequently, as one descends the mantle, the effects of increas-
ing temperature and pressure favour opposite structures, and
so either the high symmetry or low symmetry phase can be
found. Mantle convection currents arise if the less dense (high
symmetry) phase becomes stable below the low symmetry
one.

Enthalpy comparison, Monte Carlo and molecular dynam-
ics calculations provide accurate free energy comparisons be-
tween different crystal structures, consideration of harmonic
properties still has a role to play in determining which struc-
tures to compare.

The calculations in this paper were carried out by Michele
Warren, Bijaya Karki, Stewart Clark and Pardeep Ahluwalia,
using the CASTEP and CETEP programs developed by the

‡ Of course, in some materials a completely separate high pressure
phase exists unrelated to any soft mode effects.

UKCP consortium. Their contribution is gratefully acknowl-
edged.
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