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Wannier states in order-N electronic-structure method
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Brief introductions of Wannier states and the localized-orbital order-N method are given. The following related
topics are also presented; (1) real-space methods toward fully-selfconsistent order-N calculations, (2) locality of
‘exact’ composite-band Wannier states within tight-binding Hamiltonians.

Introduction

The ‘order-N’ or ‘linear-systemsize-scaling’ methods 1) are
electronic-structure calculations in which the computational
cost is ‘O(N)’, or linearly proportional to the system-size N .
In conventional schemes, the computational cost should be
O(N3), because of the matrix-diagonalization procedures or
the orthogonalization constraints of the wavefunctions. The
aim of order-N methods is to calculate large systems, for in-
stance, systems containing some thousands of atoms or more,
without such operations. So far many order-N methods have
been proposed, and one of them is called ‘localized-orbital
order-N’ (LO-O(N)) method,2) which is based on the locality
of Wannier states. Here Wannier states are not the con-
ventional ones,3,4) defined by Wannier, but are generalized
concepts, applicable to non-periodic and/or composite-band
cases.5)

Generalized Wannier states and order-N method

In general, Wannier states can be derived, from the varia-
tional procedure within a single Slater determinant, as

Hψk =

NX

j=1

εkjψj . (1)

Now we restrict the discussions to insulating cases and N is
the number of occupied states. H is an effective one-body
Hamiltonian. The parameters εij are the Lagrange multipli-
ers for the orthogonality constraints 〈ψi|ψj〉 = δij and satisfy
εij = 〈ψi|H|ψj〉. The resultant one-electron states {ψi} has
a ‘gauge’ freedom in the sense that physical quantities are
invariant under unitary transforms with respect to occupied
states

ψi → ψ′
i ≡

NX

j=1

Uijψj , (2)

where U is a unitary matrix. Wannier states can be defined as
localized wavefunctions that satisfy Eq. (1) and the orthogo-
nality constraint. Since Wannier states are not eigen states,
the Hamiltonian matrix εij ≡ 〈ψi|H|ψj〉 is not diagonal and
has following properties; (1) the trace gives the correct total
energy (Etot =

PN
k=1 εkk), (2) the offdiagonal elements are

expected to be small when Wannier states are localized in
real space and the Hamiltonian is shortrange.

Here we derive the conventional or single-band Wannier
states. In periodic systems, eigen states are Bloch states

{ψ
νk

} with the suffices of the band ν and the k-point k. On
the other hands, the single-band Wannier states W

νl(r) have
the suffices of the same band ν and the lattice vector l. The
corresponding unitary matrix U is U

νkν′l ≡ δνν′ exp(−ik · l).
Back to the case with general unitary transformations (2), the
resultant one-electron states in Eq. (2) are called ‘composite-
band’ Wannier states, in the sense that the unitary trans-
formations (2) mix eigen states {ψ

νk} with different band
suffices ν.

An actual procedure of solving Eq. (1) under the orthogo-
nal constraint is the LO-O(N) formulation,2) based on a new
variational procedure without any explicit orthogonalization
procedure. Within tight-binding cases, the energy functional
is written by

EO(N) ≡ 2

NX

ij

Aij〈ψi |H |ψj〉 + 2µ∆N, (3)

∆N ≡ N −
NX

ij

AijSij =

NX

ij

|Sij − δij |2 . (4)

where Sij ≡ 〈ψi|ψj〉 and Aij ≡ 2δij−Sji and the parameter η
should be chosen as η > εN . See the original papers 2) for the
cases of the density functional theory (DFT). Note that (1)
the minimization of the energy term 2η∆N means an itera-
tive orthogonalization procedure (Sij → δij), and, (2) when
the orthogonality is satisfied, the energy functional EO(N)

is reduced to the physical one E =
PN

i 〈ψi |H |ψi〉 and the
resultant one-electron equation is reduced to Eq. (1). To ob-
tain localized states, we must prepare proper localized initial
states, such as simple bonding orbitals, and the minimization
procedure must be done under some localization constraints.

Real-space methods toward fully-selfconsistent order-N cal-
culations

Hereafter we present our works related to the order-N
method. First one is the methodology toward DFT cases.
Our recent works 6) present a selfconsistent formulation, ap-
plicable to the order-N method, where Wannier states {ψk}
are expanded by some localized, possibly non-orthogonal, ba-
sis functions, ψk(r) =

P
φ Ckφφ(r), and both the basis func-

tions {φ(r)} and the coefficients {Ckφ} are the variational
parameters. If we fix the basis functions, the formulation is
reduced to a tight-binding one and if we do not impose any
localization constraints, the formulation is mathematically
equivalent to the plane-wave calculation.
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To treat the basis functions {φ(r)} as variational parameters,
we propose a real-space method with finite-differences, where
the basis functions are described on a real-space square mesh
grid. Within this formalism, we proposed (1) an ‘exact’ finite-
difference forms of the kinetic-energy (Laplacian) operator to
obtain an exact equivalence to the plane-wave formulation,
(2) a ‘preconditioning operator’ as a finite-difference form in
real space so as to save the computational cost, (3) a ‘window-
function technique’ to obtain localized basis functions {φ(r)}
on mesh grid.

Locality of Wannier states

Now we turn to the second topic,7) the locality of the Wan-
nier states within tight-binding cases, which corresponds to
the locality of the coefficients Ckα in the previous section.

In a one-dimensional single-band case, Wannier states de-
cay exponentially with a decay parameter proportional to the
square root of the bandgap.4) In three-dimensional composite-
band cases, however, theories have not been well developed.
So we study the locality of Wannier states in such cases,
especially what governs their locality. We focus on the Wan-
nier states of the diamond-structure solids, corresponding to
the elements of group IV, C, Si, Ge and α-Sn. Within mini-
mal tight-binding Hamiltonians, we presented a tractable and
general method of the construction and analysis of the ‘exact’
Wannier states. The resultant Wannier states correspond to
the wavefunctions in the LO-O(N) formulation without local-
ization constraints. The resultant Wannier states are bond-
centered and are analyzed by some conventional perturba-
tion theory of Wannier states. Based on the general tenden-
cies of hopping integrals within the diamond-structure solids,
we could conclude that the entire decay property of Wan-
nier states are ‘universal’ or is insensitive to the value of the

bandgap, which is very different from the above single-band
case. We also discussed a general theory of the direct rela-
tions between the Wannier states and the order-N method.
All the results imply that the locality of Wannier states di-
rectly depends on Hamiltonians and can be insensitive to the
value of the bandgap. In other words, Wannier states are
not mere ‘byproducts’ of the order-N method, but are fairly
useful for understanding the microscopic mechanism of the
condensed matters.
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