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Molecules in intense laser fields : From Coulomb
explosion to high order harmonic generation
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The nonperturbative response of molecules in ultrashort (t < 20 femtoseconds), intense (I � 1014 W/cm2 ) laser fields
can only be described by accurate numerical solutions of the corresponding time-dependent Schrödinger equation
(non-relativistic) or Dirac (relativistic) equations. Different time scales, attosecond (10–18 s) for electrons, femtosecond
(10–15 s) for nuclei make the accuracy of such numerical solutions strongly dependent on the algorithms. We present
various versions of the split-operator method used in our work with concrete applications to calculating kinetic energy
spectra of Electrons (ATI), and of protons (ATD, Coulomb explosion). Possible experimental and technological
applications such as electron and nuclear imaging, high order harmonic generation and laser control of electron-
nuclear dynamics are suggested

Introduction

The advent of short (t ≤ 20 fs), intense (I ≥ 1014 W/cm2)
laser pulses1) has led to the investigation of the regime of non-
linear, nonperturbative laser-matter interaction. The atomic
case is now well documented in a recent review2) that empha-
sizes the discovery of new nonlinear multiphoton processes
such as above threshold ionization, ATI, and high order har-
monic generation, HOHG. The behavior of molecules in in-
tense laser fields offers a new challenge due to the presence of
the nuclear degrees of freedom. Thus as early as 1980, we pre-
dicted using the dressed molecule picture of nonperturbative
laser-molecule interaction, that new laser-induced molecular
bound states would be created whenever such radiative in-
teractions exceeded molecular vibrational energies.3) These
laser-induced molecular bound states have now been experi-
mentally confirmed 4,5) and are the first concrete examples of
nonperturbative molecular interactions.

With current high laser intensities approaching or exceeding
the atomic unit of field strength:

ε0 = e/a2
0 = 5.15× 109 V/cm (1)

I0 = cε20/8π = 3.5× 1016 W/cm2, (2)

where a0 = 0.052nm is the Bohr radius, the atomic unit
(a.u.) of length, ionization is a predominant process. Thus
in a dissociative-ionization molecular process, one is deal-
ing with an initial electron-nuclear bound state where elec-
tronic time scales correspond to the atomic unit of time 24.7
attoseconds (atts, one attosecond = 10−18 s), whereas nu-
clear vibrational time scales correspond to femtoseconds (fs),
e.g . H+

2 vibrational period = 15 fs. The final electronic
state corresponds to an ionized electron which acquires en-
ergy through the ponderomotive energy,

Up =
e2ε2

4mω2
=

I/I0
4ω2

a.u. (3)

In the last formula ω and Up are in atomic units of en-
ergy, 1 a.u. = 27.2 eV. Up is a classical concept from plasma
physics. 6,7) With current lasers such as YAG laser, λ =
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1064 nm (ω = 0.0428 a.u.) and at the a.u. intensity, I = I0 =
3.5 × 1016 W/cm2, one obtains Up = 1/4ω2 = 136.5 a.u. =
3.7 keV. The corresponding electron-oscillatory (quiver) ra-
dius defines the maximum displacement of a free electron in
a field of maximum amplitude ε,

α0 = eε/mω2 = (ε/ε0ω
2)(a.u.) (4)

where 1 a.u. of length a0 = 0.052 nm. Thus one obtains
an effective, classical radius α0 = 546 a.u. = 28.4 nm at in-
tensity I0. Such large electronic energies and displacements
suggest that classical models might be applicable to describe
such nonperturbative phenomena, but the initial bound state
requires quantum calculations.

Surprisingly, although high laser intensities produce highly
nonlinear nonperturbative phenomena, simple classical mod-
els can sometimes be applied. In the case of atomic ioniza-
tion in the long wavelength regime a quasistatic laser field
induced Coulomb barrier suppression model allows for pre-
dicting atomic tunneling ionization probabilities 6) and even
HOHG.7) A similar quasistatic model which include the mul-
tilevel Coulomb potential of electrons in molecules can be
used to explain a new molecular nonperturbative phenomenon,
CREI, Charge Resonance Enhanced Ionization, originally dis-
covered in numerical simulations of the ionization and HOHG
in the simplest molecule, 8) H+

2 . Such a quasistatic model
explains the critical internuclear distances 9–11) Rc and an-
gles θc where CREI occurs, as well as, molecular HOHG
plateaus.12,13)

A useful parameter, γ, called the Keldysh parameter14) helps
to separate nonlinear multiphoton processes, either atomic or
molecular, into two regimes, the multiphoton and tunneling
regimes. γ is basically the ratio of atomic (molecular) elec-
tronic energy and field induced energies,

γ =

s
Ip
2Up

, (5)

where Up is the ponderomotive energy defined in Eq. (3)
and Ip is the ionization potential. Thus for the hydrogen
atom, Ip = 13.6 eV = 0.5 a.u., so that at I0 = 1 a.u. (3.5 ×
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1016 W/cm2), for ω = 1 a.u. (a photon having such energy
has a wavelength λ = 45.6 nm), then γ = 1.0. Thus for
γ < 1 and ω < Ip, where field effects as measured by Up,
exceed atomic (molecular) energies Ip, it is found generally
that ionization rates become independent of wavelength and
that a tunneling model can be adequate for describing ion-
ization and HOHG. 7) For γ > 1, typical of high frequen-
cies, e.g . UV, X-Ray, one has the regime of multiphoton
ionization, where the ionization rate is usually proportional
to In, where n is the photon order and I is the maximum
field intensity. In both cases, i.e . γ > 1 and γ < 1, one
has to deal with multiphoton processes, so that even in any
perturbative procedure one has to sum over large number
of states, resonant and non-resonant, bound and continuum,
electronic and nuclear. Thus a numerical method based on
accurate solutions of the time-dependent Schrödinger equa-
tion, TDSE, is the most appropriate avenue to study in-
tense field-molecule interactions. Recent proposals to con-
struct Free Electron Lasers,15) FEL’s, predict attaining inten-
sities of I = 1026 W/cm2 and wavelength of 1 Å(λ = 0.1 nm,
ω = 455.6 a.u. = 12.4 keV). In such extreme cases, the achiev-
able ponderomotive energy in the X-Ray beam will be accord-
ing to Eq. (3), Up = 105 eV = 0.1MeV. This approaches the
rest mass of the electron mc2 = 0.51MeV, thus necessitating
solutions of the time-dependent Dirac equation, TDDE, in
such extreme conditions.

As stated above, the molecular case is quite different from
the atomic case, since in the former now one has to deal with
nuclear motion which occurs in slower time scales than elec-
tronic motion (atts.) in the ground state. Excited electronic
states however have similar time scales as nuclear motion, so
that the usual Born-Oppenheimer approximation of molec-
ular physics 16) is no longer applicable. We have performed
the first non-Born-Oppenheimer calculations of dissociative-
ionization of the simplest molecule in 3-D17) and 1-D.18) In
the latter 1-D simulations, complete electron and nuclear ki-
netic energy spectra were obtained using a new technique
which avoids using absorbing boundaries. This advance in
computational method has been extremely useful and is al-
lowing us to predict new imaging methods for electrons 19)

and nuclei 20) using ultrashort intense pulses. Extensions to
multi-electron, multi-nuclear systems is required to address
the efficient laser-heating and Coulomb Explosion of clusters
leading to table-top production of neutrons,21) and even to
understand the astrophysical phenomena.22)

A numerical method for linearly polarized laser fields

An intense, linearly polarized laser field aligns molecules,23)

thus allowing to use a simple model, in which the molecu-
lar axis is parallel to the laser polarization. This allows to
reduce considerably the computer time and computer mem-
ory. A numerical method of integrating the time-dependent
Schrödinger equation, for aligned molecule, was first pre-
sented for the H+

2 molecule using cylindrical coordinates and
expressing the wave function as a Bessel-Fourier series. 24)

This expansion allows one to eliminate singularities present in
the Hamiltonian and to use unitary split operator method 25)

to evaluate numerically multiphoton transitions. Thus in
cylindrical coordinates and in atomic units (e = ~ = m = 1),
the TDSE for static (Born-Oppenheimer) nuclei describing

the interacting matter with linearly polarized laser field along
the z-axis coinciding with the internuclear R axis, is written
as,

i
∂

∂t
Ψ(z, ρ, t) = −1

2

∂

∂z2
Ψ+DρΨ+ Vc(z, ρ)Ψ + zε(t)Ψ (6)

where

Dρ =
1

2

� ∂2

∂ρ2
+

1

ρ

∂

∂ρ

�
(7)

and

Vc = −(ρ2 + (z −R/2)2)−1/2 − (ρ2 + (z +R/2)2)−1/2 (8)

for H+
2 and

Vc = −(ρ2 + z2)−1/2 for H− atom, (9)

where ρ and z (z = 0 is the center of the molecule) are the
cylindrical electron coordinates in H+

2 . Numerical integration
of Eq. (6) using the finite-difference scheme requires special
care near ρ = 0 because of the singularity in the cylindrical
Laplacian Dρ and in the Coulomb potential Vc(ρ, z). Using
Bessel-Fourier series built from the functions 26)

vn(ρ) =

√
2

LJ1(xn)
J0(xnρ/L) (10)

where J0 and J1 are Bessel functions, xn are zero’s of J0 and
L is the maximal ρ value, one can eliminate efficiently these
singularities, thus transforming the parabolic partial differen-
tial equations ppde, Eq. (6) in three coordinates (R is fixed)
t, ρ, into coupled 2-D ppde’s by eliminating the cylindrical
coordinate ρ. Thus since the vn’s, Eq. (10) are eigenfunctions
of Dρ,

Dρ vn(ρ) = −(xn
L
)2 vn(ρ), (11)

then the vn’s constitute a complete basis for functions f(ρ)
defined on the interval 0 ≤ ρ ≤ L and have continuous second
derivatives at the origin 26) (ρ = 0) and ensured the condi-
tion f(L) = 0. Using the orthonormality of vn’s, then one
can expand the total wave function Ψ in this basis,

Ψ(z, ρ, t) =

NX
n=0

Φn(z, t) vn(ρ) (12)

resulting (after inserting (12) into TDSE (6)) in the following
set of coupled 2-D ppde’s in z and t:

i
∂

∂t
Ψ(z, t) = −1

2

∂

∂z2
Ψ+A(z)Ψ + ε(t)zΨ(z, t) , (13)

where Ψ is an N-dimensional vector and A(z) is a N × N
matrix with elements defined by

An,k(z) =
1

2

�xn
L

�2
δn,k +

Z L

0

vn(ρ)Vc(z, ρ)vk(ρ)ρdρ . (14)

We note that the matrix potential A(z) which replaces the
Coulomb potential Vc(z, ρ) is now nonsingular. The system of
ppde’s Eq. (13) being parabolic can be integrated using split-
operator methods. 25) To second order accuracy, the time-
evolution algorithm is based on the relation

Ψ(t+ δt, z) = exp(Dzδt) exp(−iE(t′)zδt)

exp(−iA(z)δt) exp(Dzδt)Ψ(t, z) (15)
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where Dz = i
4
∂/∂z and t′ = t + δt/2 . The operation

exp(Dzδt)Ψ(t, z) is performed with the help of FFT and the
exponential matrix B(z) = exp(−iA(z)δt) was evaluated us-
ing the formula valid for the Hermitian matrix A,

B = U exp(−iADδt)UT (16)

where U is a unitary diagonalizing matrix (it contains eigen-
vectors of A as its columns), and AD is the corresponding
diagonalized matrix. The matrix exp(−iADδt) is simply a
diagonal matrix containing the exponentials of the eigenval-
ues of A. Calculating of the matrix B for each z is time
consuming, but needs to be done only once since B is time
independent for a fixed R. The propagation scheme (15)
has the advantage of being always unitary and can be eas-
ily extended beyond second order accuracy using symmet-
ric products which preserve Hermiticity and time reversibil-
ity.25) We have also applied the scheme to coupled nonlin-
ear Schrödinger equations 27) and shown it to reproduce well
known soliton structures of such nonlinear equations.

The above integration scheme is used to obtain ionization
rates by applying a best exponential fit to the function

PV (t) =

Z zM

−zM

dz

Z L

0

dρρ|Ψ|2 (17)

which represents the probability of finding the electron in the
integration cylinder with absorbing boundaries at the limits
±zM . Alternatively, we can calculate the ground state pop-
ulation P0(t) = | < Ψ0|Ψ(t) > |2 from which the ionization
rate Γ can be calculated as − ln[P0(t)]. Such a procedure fails
in the case of H+

2 due to resonant multiphoton processes,
especially between the ground state and first excited state
which have divergent transition dipole moments µ = R/2,
leading to large radiative couplings3) µε(t). Thus rapid Rabi
oscillations appear in P0 which make it difficult to define
proper ionization rate.

Equation (6) has been generalized to include nuclear, i.e . R
motion.17) This increases the dimensionality of the problem to
four, t, z, ρ, R, which using th Fourier-Bessel series expansion
Eq. (12) reduces Eq. (13) to a 3-D set of coupled ppde’s in t,
z and R. This has allowed us to study the effect of nuclear
motion on ionization rates and to discover the phenomenon
of critical distances for Coulomb explosions, via CREI.8–10)

Exact solution of Eq. (6) with static (Born-Oppenheimer)
and moving (non-Born Oppenheimer) nuclei has also allowed
us to calculate a highly nonperturbative phenomenon, high
order harmonic generation (HOHG). The HOHG spectrum
is obtained by calculating the power spectrum generated by
the highly nonlinear laser-induced dipole moment,

z(t) =< Ψ(t)|z|Ψ(t) > (18)

which is Fourier transformed to give the power spectrum
|zF (ω)|2. Such a spectrum is generated by recollisions of an
electron with its parent ion7) giving maximum photon energy
of 3Up or by recollision with neighbouring ions giving maxi-
mum energies up to 12Up and beyond.12,13) In the latter the
maximum displacement of the electron from its initial bound
state position can attain easily πα0. Clearly one is dealing
with high kinetic energy electrons, having very short wave-
lengths λ = h/p and large radii as measured by α0. Thus
highly accurate numerical algorithms and extensive grids are

required in intense field laser-molecule interactions.

One serious draw-back of absorbing boundary methods is
the loss of high energy particle informations, as these are
absorbed by the boundaries and never return. In the case
of HOHG, return of the electron to its initial position con-
stitutes the fundamental physics, so extremely large grids
are required to obtain reliable HOHG spectra. Furthermore,
multiphoton electron kinetic energy spectra, called ATI, and
photo dissociation called ATD with concomitant Coulomb ex-
plosion requires collecting and analyzing all asymptotic frag-
ments. This is impossible with absorbing boundary methods.
In order to alleviate this problem, we have recently developed
a new algorithm which circumvents the loss of information
contained in the asymptotic wave function, by projecting, in
a well defined domain, of size larger than α0, see Eq. (4),
the exact asymptotic numerical wave function onto the ex-
act solutions of the electron in a laser pulse, called Volkov
states.18) Such a procedure can only be implemented in 1-D
H+

2 models, i.e . Ψ = Ψ(z, R, t), due to the large amount of
data which needs to be stored for a complete study of the
electron-nucleus dynamics of the simplest molecule H+

2 in an
intense laser pulse.

A numerical method for a molecule in elliptically and linearly
polarized laser fields

Let us consider the H+
2 molecule in two laser fields: one is

elliptically polarized in the xy-plane, another is polarized lin-
early along the z-axis. The corresponding time-dependent
Schrödinger equation has now the following form (in atomic
units):

i
∂ψ

∂t
= − 2mp + 1

4mp
�x,y,zψ

−
�

ψ

|(x, y, z +R/2)| +
ψ

|(x, y, z −R/2)|
�

+

��
1 +

1

2mp + 1

�
El(t)z sin(ωzt)

�
ψ

+

��
1 +

1

2mp + 1

�
Ec(t)x cos(ωct)

�
ψ

+

��
1 +

1

2mp + 1

�
εEc(t)y sin(ωct)

�
ψ. (19)

We will solve numerically the above equation using the
finite difference method. We will present, in the following,
our method of spatial and temporal discretization.

Spatial discretization
Because of the singularity of the potential at nuclei, we
will use grids with spacings smaller near nuclei. Our mesh
is defined via the following transformation of coordinates:
X = F (x̃), Y = G(ỹ), Z = H(z̃) and we use a homogeneous
mesh in plane (x̃, ỹ, z̃). Here, F G and H are the functions
having same form:

T (u) = u ∗ un + s ∗ pn
un + pn

(20)

where n is an even integer, p ≥ 0 represents the refinement
range and 0 ≤ s ≤ 1 equal to min(DT/Du).
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To improve the conservation of the norm (L2), we use the
following new function ψ̃ =

√
F ′G′H ′ψ as in Ref. 28. By

multiplying (19) by
√
F ′G′H ′, we get ∂√

F ′∂x̃
∂

F ′∂x̃
ψ̃√
F ′ instead

of ∂
2ψ
∂x2 . We discretize this operator using the finite-difference

scheme:

∂√
F ′∂x̃

∂

F ′∂x̃
ψ̃√
F ′ (x̃i)



"

1

90h2
x̃

p
F ′
iF

′
i−3/2

p
F ′
i−3

#
ψ̃i−3

−
"

3

20h2
x̃

p
F ′
iF

′
i−1

p
F ′
i−2

#
ψ̃i−2

+

"
3

2h2
x̃

p
F ′
iF

′
i−1/2

p
F ′
i−1

#
ψ̃i−1

+

"
3

2h2
x̃

p
F ′
i+1F

′
i+1/2

p
F ′
i

#
ψ̃i+1

−
"

3

20h2
x̃

p
F ′
i+2F

′
i+1

p
F ′
i

#
ψ̃i+2

+

"
1

90h2
x̃

p
F ′
i+3F

′
i+3/2

p
F ′
i

#
ψ̃i+3

− 1

90h2
x̃F

′
i

"
1

F ′
i+3/2

+
1

F ′
i−3/2

#
ψ̃i

+
3

20h2
x̃F

′
i

�
1

F ′
i+1

+
1

F ′
i−1

�
ψ̃i

− 3

2h2
x̃F

′
i

"
1

F ′
i+1/2

+
1

F ′
i−1/2

#
ψ̃i. (21)

This 7 point scheme is of order 5 and is symmetric. At sin-

gular points we use an average value of the potential
R

V
1
r
dV

V

in a small sphere surrounding the nucleus. This is equivalent
to redistributing the nucleus charge within this sphere but is
superior to using regularized potentials.

Temporal discretization
We use the following notation:

α = −2mp + 1

4mp
β = − 1

mp

Cx =
α∂√
F ′∂x̃

∂

F ′∂x̃
1√
F ′ +

2mp + 2

2mp + 1
Ec(t)x cos(ωct)

Cy =
α∂√
G′∂ỹ

∂

G′∂ỹ
1√
G′ +

2mp + 2

2mp + 1
Ec(t)y sin(ωct)

Cz =
α∂√
H ′∂z̃

∂

H ′∂z̃
1√
H ′ +

2mp + 2

2mp + 1
εEl(t)z cos(ωlt)

CV = − 1

|(x, y, z −R/2)| −
1

|(x, y, z +R/2)|

Px =

�
1 + i

δt

4
Cx

�−1

exp(−i
δt

6
CV )

�
1− i

δt

4
Cx

�

Py =

�
1 + i

δt

4
Cy

�−1

exp(−i
δt

6
CV )

�
1− i

δt

4
Cy

�

Pz =

�
1 + i

δt

4
Cz

�−1

exp(−i
δt

6
CV )

�
1− i

δt

4
Cz

�
. (22)

We propagate (in time) the wave function using the SPLIT
operator method25) and the Crank-Nicholson scheme 29)

ψ̃(t+ δt) = PzPyP
2
xPyPzψ̃(t). (23)

These are second order schemes in δt (see Ref. 25) and show
complete separability of the integration scheme thus facilitat-
ing future projection onto Volkov states.

Tests for H+
2 for a linear polarization case

We apply, in the following, our new numerical method for
computation of the ionization rates of H+

2 in a linearly po-
larized laser field. We initialize our simulation using the
electronic ground state of H+

2 obtained numerically with the
help of imaginary time propagation method. The cylindrical
symmetry of the problem simplifies much the problem. Be-
cause we have ψ(x, y, z, t) = ψ(−x, y, z, t) and ψ(x, y, z, t) =
ψ(x,−y, z, t) for all (x, y, z, t), we can use the following con-
ditions to save the computer time:

∂ψ

∂x
(y = 0) = 0

∂ψ

∂y
(x = 0) = 0. (24)

This saves the computer time by factor 4. We used the laser
intensity I = 1014 W/cm2 and the wavelength λ = 228 nm.
We have studied first the convergence in one direction, by
using rather narrow ranges, i.e .: |x|max = |y|max = 10.25,
|z|max = 125 a.u. We used the following values of other
parameters: min(�x) = min(�y) = 0.5, ratiox = ratioy = 1,
�t = 0.02, and the refinement range of our mesh was
|z| ≤ 26. Our laser was smoothly turned-on during 5 cy-
cles. We use the following notation: ratiox = min(�x)

max(�x) . The
ionization rates given in the first line of Table 1 were obtained
without using the coordinate transformation (i.e . equidis-
tant grid), and required two times more points in z direction
than in the second line which implicate consuming two times
more CPU-time. The third result which use a more finer
grid with the same transformation parameter as the second
one has been added to verify the convergence. We conclude
that coordinate transformation reduced the computation
time without decreasing the accuracy. For comparison, we
present also results obtained using the alternation-direction
implicit method (ADI)28) which gives the same result. Next,
we increased the xy range (|x|max, |y|max) to demonstrate
the convergence of calculated rates (see Table 2). Here, the
last result has been obtained with absorption in all three
directions (x, y, z), but the other calculations have not used
absorption in the transverse direction (x, y). Our ioniza-
tion rates are close to that obtained by S.Chelkowski et
al . 24) using a 3-D code with absorption in the z-direction
only, and we have used 574 points in the z-direction in the

Table 1. Effect of the coordinate transformation in z direction.

Method min(�z) ratioz Ionization rate (s−1)

SPLIT 0.214 1.0 5.2 ∗ 1013

SPLIT 0.214 0.2 5.2 ∗ 1013

SPLIT 0.107 0.2 5.2 ∗ 1013

ADI 0.214 0.2 5.2 ∗ 1013

Table 2. Comparison of different computation methods.

max(|x|) = max(|y|) Ionization rate

10.25 5.2 ∗ 1013

15.25 3.6 ∗ 1013

20.75 2.98 ∗ 1013

62.75 2.83 ∗ 1013
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place of 2048 points used by S.Chelkowski et al .24) (they have
used the Bessel functions in the xy direction). We note that
due to expansion of the wave function in the transverse (x, y)
direction, convergence requires at least half as many points in
the (x, y)-direction as in the z-direction parallel to the field.
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