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A dual transformation technique that can deal with awkward Coulomb potentials is developed for electronic wave
packet dynamics. The technique consists of the variable transformation of the Hamiltonian and the transformation
of the wave function with a normalization constraint. The time evolution is carried out by the alternating-direction
implicit method. The operation of the transformed Hamiltonian on the wave function is implemented by using five-
point finite difference formulas. We apply it to H atom and a realistic 3D model of H+

2 . Efficient time evolution
schemes are provided by imposing the variable transformations on the following requirements: the transformed wave
function is zero and analytic at the nuclei; the equal spacings in the scaled coordinates correspond to grid spacings
in the unscaled coordinates that are small near the nuclei (to cope with relatively high momentum components near
the nuclei) and are large at larger distances. The validity of the transformations is also enforced by the fact that the
missing volume in phase space decreases with decreasing spacings.

1. Introduction

Femtosecond technology has opened up a new field of study
as to nonlinear optical processes such as above-threshold ion-
ization and high-order harmonic generation of emission. The
intensity can be so high to induce tunneling ionization. In the
high-intensity and low-frequency range, the Coulomb poten-
tial distorted by the laser electric field forms a “quasi-static”
barrier through which an electron can tunnel. High-order
harmonics are generated when the ejected electron circles
back to the vicinity of the nucleus (rescattering).1) Electronic
dynamics in intense fields involves such large amplitude mo-
tions.

For molecules, nuclear motion is also involved in the dynam-
ics of the system. Recent experiments and theories in a strong
laser field case (> 1011 W/cm2) have underscored the com-
bined process of photodissociation and photoionization. It
has been experimentally revealed that the kinetic energies
of fragments are consistent with Coulomb explosions at spe-
cific internuclear distances in the range of 7–10 a.u.2,3) An
explanation for this finding is as follows: ionization rates at
the critical internuclear distances exceed those near the equi-
librium internuclear distance and those of dissociative frag-
ments, and ionization to higher-charge states occurs when
the nuclei pass through the critical range. The fact that ion-
ization is enhanced at critical internuclear distances suggests
that strong correlation between the electronic motion and the
nuclear configuration/motion exists in intense laser fields.

Although various numerical methods for electronic dynamics
in laser fields have been proposed, it is not an easy task to
simulate, e.g ., large amplitude motions of an electronic wave
packet. There exist two kinds of approach. One is the ex-
pansion using spatially delocalized bases.4) In this approach,
the time-dependent wave function is expanded in terms of
state-specific states, i.e ., bound, autoionizing, and scattering
states of the field-free Hamiltonian. The grid representation
is complementary to the state-specific expansion. For elec-
tronic dynamics, however, one must cope with the awkward

Coulomb potential characterized by its long range and its
singularity at the origin. Because of those difficulties, the
performance of the conventional grid methods is very poor
for Coulomb systems.

Recently, we have been developing an efficient grid method
to simulate electronic dynamics accurately.5) The choice of
coordinate systems is crucial. In Ref. 5, the following three
requirements are imposed on the coordinate system to be em-
ployed: (1) the wave function is transformed so that it is zero
at the Coulomb singular point (which ensures that the numer-
ical difficulties concerning the singularity are avoided); (2)
the differential operators can be well evaluated by the finite
difference method even near the Coulomb singular points;
(3) the equal spacings in the new (scaled) coordinates corre-
spond to grid spacings in the cylindrical coordinates that are
small near the nuclei (to cope with relatively high momentum
components near the nuclei) and are large at larger distances
therefrom. The transformed Schrödinger equation is inte-
grated in time by the alternating-direction implicit method
(ADI). 6) We have applied the method to H. The cylindri-
cal coordinate ρ for the electron is transformed as ρ = ξ3/2,
where ξ is a scaled coordinate. We have also succeeded in
including nuclear motion for a realistic 3D model of H+

2 .
7)

Although the nuclear motion is restricted to the polarization
direction z of the laser electric field (perpendicular to ρ), the
electron moves in three dimensional space. The two elec-
tronic coordinates z and ρ and the internuclear distance R
are treated quantum mechanically without using the Born-
Oppenheimer approximation.

In this paper, we generalize the dual transformation tech-
nique, i.e ., the method of consistently transforming both of
the wave function and the Hamiltonian for wave packet dy-
namics. The transformation of ρ is expressed as ρ = f(ξ),
where the function is chosen to satisfy the three requirements
(1)–(3) described above. Scaling is extended to the unscaled
z coordinate as z = g(ζ). Various functions of the trans-
formations are examined in different ranges of grid spacings
∆ξ and ∆ζ, by comparing the wave packet calculated by the
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dual transformation technique with the exact one.

2. Method

2.1 Dual transformation
In this work, we apply the dual transformation technique to
H and the 3D model of H+

2 employed in Ref. 8. In the model,
the following assumptions are made: the electric field of the
applied laser is linearly polarized along the z-axis; the nuclear
motion is restricted to the polarization direction. Because of
the cylindrical symmetry, the z-component of the electronic
angular momentum, m~, is conserved; the electronic degrees
of freedom to be considered are two cylindrical coordinates z
and ρ.

The center-of-mass motion of this three-body system can be
separated from internal coordinates. The Hamiltonian for the
internal motions is written as (throughout this paper atomic
units are used)

H = − 1

mp

∂2

∂R2
− 1

2µ
(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

∂2

∂z2
) +

m2

2ρ2

+
1

R
+ V (ρ, z, R) + Vε(z, t), (1)

where R is the internuclear distance, me and mp are electron
and nuclear masses, and

µ =
2mpme

2mp +me
. (2)

The potential V (ρ, z, R) is the sum of the Coulomb interac-
tions

V (ρ, z, R) = − 1p
ρ2 + (z −R/2)2

− 1p
ρ2 + (z +R/2)2

,

(3)

and Vε(z, t) is the dipole interaction between the molecule
and the electric field ε|(t) of a laser pulse

Vε(z, t) = zε(t). (4)

Here, ρ and z are measured with respect to the center of
mass of the two nuclei. For the H atom, the R-degree of free-
dom is eliminated from Eq. (1), and Eq. (3) is replaced with
−1/

p
ρ2 + z2(µ is the reduced mass of H).

We would like to spatially discretize the Hamiltonian to solve
the time-dependent Schrödinger equation

i
∂

∂t
Φ(ρ, z, R) = HΦ(ρ, z, R). (5)

We use the finite difference method to evaluate the differen-
tial operators contained in the Hamiltonian. For the cylindri-
cal coordinate system, however, the finite difference method
does not give sufficient accuracy. We propose here the scaled
cylindrical coordinate system as

ρ = f(ξ), z = g(ζ), (6)

where f and g are functions of scaled coordinates ξ and ζ.

In addition to the variable transformation of the Hamilto-
nian, we have to transform the wave function to avoid the nu-

merical difficulties concerning the Coulomb singularity. The
original wave function Φ(ρ, z, R) which is in general finite at
the nuclei must be transformed to a function Ψ(ξ, ζ, R) that
is zero at the nuclei. This demand on the transformed wave
function, i.e ., the requirement (1) in Section 1, must be sat-
isfied under a normalization condition. The original wave
function Φ(ρ, z, R) is normalized as
Z ∞

0

dR

Z ∞

0

dρ

Z ∞

−∞
dzρ|Φ(ρ, z, R)|2 = 1. (7)

When the finite difference method is used, it is generally dif-
ficult to conserve the norm of the wave function. It has been
known5) that to make stable and accurate the time evolu-
tion scheme based on the finite difference method the follow-
ing normalization condition should be imposed on the trans-
formed wave function Ψ(ξ, ζ, R)
Z ∞

0

dR

Z ∞

0

dξ

Z ∞

−∞
dζ|Ψ(ξ, ζ, R)|2 = 1. (8)

Note that the volume element for normalization is dRdξdζ
not like ξdRdξdζ.

The transformed wave function that satisfies the normaliza-
tion condition Eq. (8) is uniquely determined as

Ψ(ξ, ζ, R) =
p
f(ξ)f ′(ξ)g′(ζ)Φ(f(ξ), g(ζ), R), (9)

where a function with a prime denotes the derivative with
respect to its argument. Inserting Eq. (9) into Eq. (5), one
obtains the following Schrödinger equation:

i
∂

∂t
Ψ(ξ, ζ, R) = ĤΨ(ξ, ζ, R), (10)

where the transformed Hamiltonian Ĥ is given by

Ĥ = KR +Kξ +Kζ +
m2

2ρ2
+ V + Vε. (11)

The kinetic energy parts with respect to coordinates ξ, ζ,
and, R, i.e ., Kξ, Kζ , and KR are expressed as

Kξ = Tξ +
1

4µf ′4(ξ)

�
7

2
f ′′2(ξ)− f ′(ξ)f ′′′(ξ)

�
− 1

8µf2(ξ)
,

(12a)

Kζ = Tζ +
1

4µg′4(ζ)

�
7

2
g′′2(ζ)− g′(ζ)g′′′(ζ)

�
, (12b)

KR = − 1

mp

∂2

∂R2
, (12c)

where

Tξ = − 1

4µ

�
1

f ′2(ξ)
∂2

∂ξ2
− ∂2

∂ξ2

1

f ′2(ξ)

�
, (13a)

Tζ = − 1

4µ

�
1

g′2(ζ)
∂2

∂ζ2
− ∂2

∂ζ2

1

g′2(ζ)

�
. (13b)

2.2 Time evolution
The formal solution of Eq. (10) is expressed as

Ψ(tn+1) = exp[−i∆Ĥ(tn+1/2)]Ψ(tn) +O(∆t3), (14)
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where Φ(tn) is the wave function at time tn = n∆t+t0 and T̂
is the time ordering operator. The Hamiltonian in the second
version of Eq. (14) is that at the midpoint of the time step,
tn+1/2 = tn +∆t/2. If the time step ∆t is sufficiently small,

the propagator exp[−i∆Ĥ(tn+1/2)] can be replaced with an
approximate propagator that is accurate up to a certain or-
der of ∆t. It has been known that the alternating-direction
implicit method (ADI) provides short time propagators of
which quality is characterized by the second-order accuracy
in time and the stability for various potentials.6) In addition
to these points, as will be demonstrated, the ADI is amenable
to variable transformations. Let us assume that Ĥ(tn+1/2) is
decomposed into three operators A(tn+1/2), B(tn+1/2), and
C(tn+1/2). According to the ADI, the time evolution opera-
tor exp[−i(A+B + C)∆t] is expressed as

e−i(A+B+C)∆t =
1

1 + iA∆t/2

1

1 + iB∆t/2

1− iC∆t/2

1 + iC∆t/2

× (1− iB∆t/2)(1− iC∆t/2)

+O(∆t3). (15)

The actual operation on the wave function is separated
into three steps by introducing artificial intermediate states
Ψn+1/3 and Ψn+2/3

(1 + iC∆t/2)Ψn+1/3 = (1− iC∆t/2)(1− iB∆t/2)

× (1− iA∆t/2)Ψ(tn), (16a)

(1 + iB∆t/2)Ψn+2/3 = Ψn+1/3, (16b)

(1 + iA∆t/2)Ψ(tn+1) = Ψn+2/3, (16c)

which is known as the Dyakonov scheme. The wave function
Ψ(tn+1) can be obtained by solving Eqs. (16) in order. As
shown below, the dynamics of the electronic and nuclear wave
packet can be pursued without invoking any approximations.

When the differential operators involved in A, B, and C are
chosen to be those of different degrees of freedom, Eqs. (16)
can be reduced to three sets of one-dimensional implicit prob-
lems by using the finite difference method with appropriate
boundary conditions. For H+

2 , the three operators Kζ , Kξ,
and KR in the Hamiltonian Eq. (11) must be confined in A,
B, and C separately. For instance, Eq. (16a) is then reduced
to a set of systems of simultaneous linear algebraic equations
for the unknown Ψn+1/3: Eqs. (16) can be reduced to three
sets of systems of simultaneous equations. The systems of
equations are pentadiagonal for the five-point finite differ-
ence scheme, which can be solved efficiently by using LU
decomposition.

2.3 Explicit forms for variable transformation
We are now in a position to explicitly determine f and g
functions of scaled coordinates ξ and ζ. To fulfill the three
requirements (1)–(3) in Section 1, we choose the following
forms

f(ξ) = ξ

�
ξn

ξn + αn

�ν

, (17a)

g(ζ) = [1− (1− β)exp(−ζ2/γ2)]ζ, (17b)

where the parameters α and γ are widths of ρ- and z-ranges
where the potential V is relatively deep, and β is the pa-
rameter to shorten ζ-grid spacings near z=0. Around the
singular points (located along ξ = 0), the prefactor

√
ff ′g′

changes as ≈ p
(1 + nν)βξ(2nν+1)/2/αnν . The requirement

(2) that the transformed wave function must be analytic, de-
mands that the order of the power of ξ, (2nν + 1)/2, must
be a natural number. The number nν must be chosen out
of half odd numbers. Then, the transformed wave function
given by Eq. (9) is zero at the nuclei; the requirement (1) is
automatically fulfilled.

Inverting equally spaced points in ξ and ζ onto ρ and z,
one finds that the grid spacings in ρ and z are proportional
to f ′ and g′, respectively. As ξ increases, f ′ changes from
(1 + nν)(ξ/α)nν to 1; as ζ increases, g′ changes from β to
1. When β < 1 and α >> ∆ξ, the requirement (3) is met.
Then, grid spacings along rho- and z-directions decrease as
approaching to the singular points. When the cylindrical co-
ordinate system (α = 0 and β = 1) is employed, the split
operator time evolution technique together with the use of
FFT is applicable to the transformed Hamltonian (because
the prefactors of the differentials in the transformed Hamil-
tonian are independent of the coordinates), but the efficiency
as a numerical method is very low. Poor performance of the
cylindrical coordinate system originates from the fact that
the requirements (2) and (3) are not satisfied. For the cylin-
drical coordinate system, the transformed wave function is
not analytic around the nuclei because

√
ff ′g′ ≈ √

ρ. The
Fourier series expansion of the transformed wave function
converges very slowly.

In Eq. (13a), the symmetrized product form of ∂2/∂ξ2 and
1/f ′2(ξ) is adopted as well as in Eq. (13b). If symmetric
difference formulas are applicable to Tξ, the grid represen-
tation of the symmetrized product form is symmetric: the
grid representation of Kξ is then still hermitian. The norm is
hence strictly conserved (without numerical roundoff errors).
However, the finite difference representation of

∂2

∂ξ2

Ψ(ξ, ζ, R)

f ′2(ξ)
, (18)

at the point ξ = ∆ξ next to the line ξ = 0 requires evaluat-
ing Ψ(ξ, ζ, R)/f ′2(ξ) at ξ = 0, which is generally nonzero.
It is not allowed to simply put the boundary condition
Ψ(ξ = 0, ζ, R) = 0 into the element. To avoid this diffi-
culty in the actual numerical scheme, we use an asymmetric
form

Kξ = − 1

2µf ′2(ξ)

�
∂2

∂ξ2
− 2f ′′(ξ)

f ′(ξ)
∂

∂ξ

�

− 1

4µf ′4(ξ)

�
5

2
f ′′2(ξ)− f ′(ξ)f ′′′(ξ)

�

− 1

8µf2(ξ)
. (19)

This form is still hermitian, but the finite difference represen-
tation is only approximately symmetric except when f is a
linear function of ξ (cylindrical coordinate ρ). We will show
that the loss of population due to the asymmetry is negli-
gible when the transformation functions f and g are chosen
properly.
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3. Results and discussion

3.1 Application to H
We first apply our method to the time evolution of a hy-
drogen atom in the case where no laser field is turned on
and the atom is initially (at t = 0) in the ground state
1s. We designate the field-free transformed Hamiltonian
as Ĥ0. It should be pointed out that the time evolution
of 1s is the worst case in applying the present method.
As the average of the radial coordinate becomes larger,
the steep fall of the Coulomb potential around the nucleus
damages the accuracy less severely. Since only two vari-
ables ξ and ζ are involved, we use the Peaceman-Rachford
method which is a two-dimensional version of the ADI
method. The time evolution for ∆t is then separated into
two steps: (1 + iB∆t/2)Ψn+1/2 = (1 − iA∆t/2)Ψ(tn) and
(1 + iA∆t/2)Ψ(tn+1) = (1− iB∆t/2)Ψn+1/2.

We demonstrate how much the norm and overlap of the
1s state calculated by our method decrease or change with
time. The norm and overlap are defined as 〈Ψf

1s(t)|Ψf
1s(t)〉

and 〈Ψf
1s(0)|Ψf

1s(t)〉, respectively, where Ψf
1s(0) is the dis-

cretized wave function whose amplitudes at the grid points
are identical with the analytic 1s transformed wave function
Ψ1s =

√
2ff ′g′exp(−

p
f2 + g2) , and Ψf

1s(t) denotes the time
evolution of Ψf

1s(0) for the discretized form of the field-free
transformed Hamiltonian, Ĥ ′

0. The integrals with respect to
ξ and ζ are performed by using the trapezoidal rule.

It should be noted that Ψf
1s(0) is not identical with the ground

state of the discretized Hamiltonian, Ĥ ′
0, Ψ

′
1s(0). The ini-

tial wave function Ψf
1s(0) includes excited state components

{Ψ ′
2s, Ψ

′
3s, . . . } of Ĥ ′

0, i.e ., Ψf
1s(0) =

P
cj(0)Ψ

′
j , where j runs

from 1s (c1s is dominant). As the discretized form is better
approximated to the Hamiltonian (11), the norm and overlap
at t = 0 are closer to unity and the difference between Ψ ′

1s

and Ψf
1s(0) becomes smaller (c1s ∼ 1). The time evolution of

Ψf
1s calculated by our method is expressed as

Ψf
1s(t) =

X
j

cj(t)Ψ
′
jexp(−itE ′

j) (20)

where E′
j are eigenvalues of Ĥ ′

0 and cj(t) are expected to
be slowly varying functions of time. The norm and over-
lap change with time as 〈Ψf

1s(t)|Ψf
1s(t)〉 =

P |cj(t)|2 and
〈Ψf

1s(0)|Ψf
1s(t)〉 =

P
c∗j (0)cj(t)exp(−itE ′

j), respectively. If
the time evolution scheme generates no errors, the coeffi-
cients cj(t) are time-independent, i.e ., cj(t) = cj(0). The
time-dependence of cj(t) originates from the inaccuracy of
the time evolution scheme.

We test transformations by changing n and ν in Eq. (17a). As
shown in Section 2.3, near ξ = 0, the transformed wave func-
tion changes as ∝ ξ(2nν+1)/2 . Since we apply the finite dif-
ference method, the transformed wave function must change
linearly or quadratically with ξ: nν must be 1/2 or 3/2. In
what follows, we numerically test two cases for nν = 1/2 and
the n = 1 and ν = 3/2 case.

The n = 1 and � = 1=2 transformation
Shown in Fig. 1 are norms and overlaps for the five-point
finite difference scheme. The norms are denoted by solid
lines and the absolute values of overlaps are denoted by
lines with open circles. Two cases of different grid spacings

are compared: Case (a) ∆ξ = ∆ζ = 0.26 (red); Case (b)
∆ξ = ∆ζ = 0.13 (green). The grid boundaries are chosen
as ξmax = 65.0 (the grid end in ρ is 54.3) and ζmax = 55
(the corresponding grid ends in z are ±52.9). For Case (a),
Nξ = 250 and Nzeta = 423. The time step used to evolve the
wave function is ∆t = 0.05 throughout this paper. As shown

in Fig. 1,
q

〈Ψf
1s(t)|Ψf

1s(t)〉 ≈ |〈Ψf
1s(0)|Ψf

1s(t)〉|. This means

that c1s(t) ≈ 1 and cj(t) ≈ 0 for j 
= 1s. The generation
of excited states of Ĥ ′

0 is negligible as well as the leakage in
norm. Except in the early stage where the norm decreases,
c1s(t) is nearly time-independent (although it oscillates).

The ground state for Ĥ ′
0, Ψ

′
1s, is obtained by operating an en-

ergy filter on Ψf
1s(0) and eliminating the excited components.

The norm 〈Ψ ′
1s(t)|Ψ ′

1s(t)〉 and the overlap |〈Ψ ′
1s(0)|Ψ ′

1s(t)〉| do
not change up to 6 or 7 digits. This again proves that the co-
efficients cj(t) in Eq. (20) are nearly time-independent, i.e .,
cj(t) = cj(0). The source of phase errors arising in the time
evolution of the wave function is therefore only the inaccu-
racy of eigenvalues of the discretized Hamiltonian Ĥ ′

0. The
eigenvalues of Ĥ ′

0 are highly accurate; the ground state en-
ergy is −0.49943 for Case (a) and −0.49971 for Case (b). The
virial theorem is also fulfilled to very high accuracy; for the
ground state of Ĥ ′

0, the ratio of the potential energy to the
kinetic energy is −1.9974 for Case (a) and −1.9998 for Case
(b).

The solutions of the five-point scheme converge to that of the
Schrödinger equation by reducing ∆ξ, ∆ζ and ∆t; that is, the
scheme is consistent with the Schrödinger equation. For the
parameters chosen in Fig. 1, the error does not grow expo-
nentially with time. Practically, the method of the n = 1
and ν = 1/2 transformation is unconditionally stable. For
the cylindrical coordinate system, the accuracy is hardly im-
proved by using higher order finite differences nor by using
smaller spacings. For Case (a), the absolute value of the over-
lap is 0.88 for the five-point scheme; for Case (b) the values
go up by 0.02–0.03.

Fig. 1. Norms and overlaps of the 1s state calculated by the five-point
finite difference scheme for n = 1 and � = 1/2. The two cases (a)
and (b) for different grid spacings are compared. See the text. The
norms are denoted by solid lines and the absolute values of overlaps
are denoted by lines with open circles. The parameters for variable
transformations are as follows: � = 28.3, � = 0.2 and 
 = 32.
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The n = 1 and � = 3/2 transformation
Comparing numerical results, we find that the accuracy is a
little worse for the n = 1 and ν = 3/2 transformation than
for the n = 1 and ν = 1/2 one. While the 1s transformed
wave function for nν = 1/2 increases linearly with ξ around
the nucleus, it increases quadratically for nν = 3/2. For both
cases, the initial norm at t = 0 is accurate up to 7 or 8 dig-
its. The difference in accuracy comes from the fact that the
asymmetry of the finite difference representation of Eq. (19)
on grid points ξj = j∆ξ is severer for the present transfor-
mation than for the n = 1 and ν = 1/2 transformation.

The n = 1/2 and � = 1 transformation
Among those we have tested, the n = 1 and ν = 1/2 transfor-
mation provides most accurate results when ∆ξ is as small as
in Case (a). For low bound states, the accuracy is improved
by increasing α. Extremely large α, however, should not be
used when higher excited/continuum states are involved in
the dynamics of the wave packet because the grid spacing
in ρ space increases as ∆ρ ∝ f ′ ≈ (1 + nν)(ξ/α)nν until ξ
reaches α . In the range where the potential is nearly flat, the
grid spacing ∆ρ must be constant. For Eq. (18a), f ′ becomes
constant where ξ > α. Different transformations of Eq. (18a)
should be compared for a fixed α.

When computational ability is limited or large grids are
required to propagate the wave packet, we recommend to
use another transformation of nν = 1/2, i.e ., the n = 1/2
and ν = 1 case. When the grid spacings are much larger
than in Case (a), say, Nξ = 60 and Nζ = 100 (the other
parameters are the same as before), the n = 1/2 and ν = 1
transformation is superior to the n = 1 and ν = 1/2 one.
For large spacings, while the accuracy of the finite difference
method in evaluating the differentials is nearly the same for
both transformations, the asymmetry in the finite difference
representation near ξ = 0 is much smaller for the n = 1/2
and ν = 1 transformation than for the n = 1 and ν = 1/2 one.

3.2 Classical phase space analysis
As shown in this paper, variable transformation together with
the consistent transformation of the wave function is indis-
pensable for the wave packet dynamics in Coulomb systems.
In the following, using the phase space analysis, we examine
why the efficincy of the grid representation is enhanced by
the variable transformations tested in Section 3.1. In general,
wave packets decay exponentially in classically forbidden re-
gions of phase space. The representation efficiency can there-
fore be optimized by minimizing the missing phase space,
i.e ., the classically allowed phase space that cannot be cov-
ered by the grid representation or by minimizing the wasted
phase space area relative to the phase space covered by the
grid representation (Fattal et al.9) have applied the method
to the H+

2 eigenvalue problem). The maximum momentum
with ξ in the grid representation is given by π/∆ξ. The
function f(ξ) should be chosen so that the phase space be-
tween −π/∆ξ and π/∆ξ covers the classically allowed phase
space as well as possible. Here we do not give the details of
the analysis. To conclude, with decreasing ∆ξ, the missing
volume approaches zero for the nν=1/2 and nν=3/2 trans-
formations, while it diverges in a logarithmic way for the
cylindrical coordinate system.10)

3.3 3D packet simulation of H+
2

The two transformations of nν = 1/2 are also tested for the
3D H+

2 . The dissociative process is taken as the example.
To that end, first, the exact ground state (of the vibrational
quantum number v = 0 in 1σg) of the 3D full system is
prepared by operating an energy filter on an approximate
ground state to eliminate the excited components. Next, the
molecule is excited by a weak ultrashort pump pulse from
the ground state onto 1su. The frequency used is ω = 0.43
(105 nm) which corresponds to the energy gap between 1σg

and 1σu at the equilibrium internuclear distance R = 2.0 and
the pulse duration is T = 100 (2.5 fs). The pump field is put
into the dipole interaction Eq. (4). A perturbative iteration
scheme59 with respect to the dipole interaction is used to
simulate the excitation process of the 3D packet in the weak
field limit. To perform the time evolution of the packet re-
quired in the scheme, we solve the transformed Schrödinger
Eq. (10) by using the ADI method. At the end of the pump
process (t = 0), the electronically excited component of the
packet (the first order component with respect to the dipole
interaction) is normalized to unity. After t = 0, the dissocia-
tive motion is pursued; the excited component is propagated
without an external field.

To illustrate the packet dynamics, we integrate the 3D packet

Fig. 2. Contour maps of the time-dependent probabilityR
j�(�, z, R)j2�d�. A sequence of snapshots shows that the packet

pumped on 1�u moves toward larger internuclear distance. The
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origin t = 0 in time is the end of the pump pulse. In (a), n = 1 and
� = 1/2; N� = 151 and N� = 207. In (b), the n = 1/2 and � = 1
transformation; N� = 19 and N� = 57.

over ρ . Snapshots of the probability obtained by integrating
the 3D packet with respect to ρ are shown in Fig. 2. The
grid ends are chosen as ρmax = 8.83 and zmax = 10. We
choose α = 28.3 and ∆R = 0.05. In Fig. 2(a), n = 1 and
ν = 1/2. The numbers of grid points are enough large, al-
though no transformation is used for z-coordinate; Nξ = 151
and Nζ = 207 (∆ξ = 0.1, ∆ζ = 0.1). The excitation and
dissociation dynamics in Fig. 2(a) is regarded as the exact
one. As known from the existence of the nodal line at z = 0,
the packet prepared by the pump pulse is electronically 1σu.
The errors in electronic phases attached to the wave func-
tion are small enough to simulate the excitation process; the
vibrational phases are also accurate enough to simulate dis-
sociation process. In Fig. 2(b), the n = 1/2 and ν = 1 trans-
formation is used. The numbers of grid points are reduced
to Nξ = 19 and Nζ = 57. The main features of the dynam-
ics are well simulated even with the parameter set used in
Fig. 2(b), except that the wave packet trails the skirt of low
density and the relative nuclear velocity is a little larger than
the exact one.

3.4 H+
2 in intense fields

We have investigated effects of the nuclear motion on en-
hanced ionization and on electron transfer between the two
nuclei.7) Correlations between the electronic and nuclear mo-
tions are extracted from the full dynamical calculation.

4. Summary and conclusions

We established the dual transformation technique for wave
packet dynamics. The technique contains both the variable
transformation of the Hamiltonian and the transformation of
the wave function with a normalization constraint. We ap-
plied it to Coulomb systems, i.e ., the H atom and the 3D
model of H+

2 . When the variable transformation functions

and the grid spacings are properly chosen in the dual trans-
formation, the virial theorem is fulfilled to very high accuracy.
For the dual transformation, the singularity is removed with-
out violating the Schrödinger equation and any variational
procedure is unnecessary.

In this paper, the wave functions are expressed in cylindrical
coordinates. The dual transformation technique is in princi-
ple applicable to any coordinate systems. The procedure in
solving a given problem is to choose the best coordinate sys-
tem for describing the dynamics and then to apply the dual
transformation. In conclusion, the dual transformation is a
solid technique that provides efficient time evolution schemes
for Coulomb systems. The accuracy and stability reach the
level usually required for wave packet dynamics.

This work was supported in part by the Department of High-
Density Optical Pulse Generation and Advanced Material
Control Techniques.
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