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We suggest a new method to calculate an expectation value of a delta function, hΨ j Æ(Ĥ � E) j Ψi. The

delta function can be replaced by a Gaussian function,
q

�
�
exp[ � �(Ĥ � E)2], with large �. Then we apply the

Suzuki-Trotter decompositions to this Gauss function of the Hamiltonian. exp[ � �(Ĥ � E)2] = lim
N!1

fexp[ �

�

N
Â 1] · · · exp[ �

�

N
ÂM]gN, (Ĥ � E)2 = Â 1 + · · · + ÂM. Approximate calculations with finite N are made, whose

the error is estimated to be O( 1
N2 ). Calculations of hΨ j

q
�

�
exp[ � �(Ĥ � E)2] j Ψi are performed for quantum

mechanical problems. We present detailed descriptions on our methods and the numerical results for harmonic
oscillator problems in one- and three-dimensions.

Introduction

In the quantum physics some dynamical quantities in the
matter 1) can be expressed by

a(E) = Im{〈Ψ | Â† 1

Ĥ − E − iε
Â | Ψ〉}

= π〈Ψ | Â†δ(Ĥ − E)Â | Ψ〉}. (1)

Examples of them are the density of states and the forward
scattering amplitude. In this study we replace the delta-
function by the Gaussian function,

a(E) = limβ→∞ π〈Ψ | Â†
r

β

π
e−β(Ĥ−E)2Â | Ψ〉. (2)

Although the Gaussian function with finite β is not exactly
equal to the delta-function, it is justified to use the former
instead of the latter in the calculation because β−1 can be
interpreted as the resolution in the actual observations.

Let us consider to calculate the following wave function,

| φ′〉 = e−β(Ĥ−E)2 | φ〉. (3)

We apply the Suzuki-Trotter decomposition to calculate
exp(−β(Ĥ −E)2). It is well known in the work based on the
quantum Monte Carlo methods 2) that this method is quite
stable. Calculating exp(−iĤt) by this method has been also
extensively studied.3)

Methods

Our study here will be limited to the quantum mechanics,
i.e . to the one particle problems.

First we describe the method in the one-dimensional case for
simplicity. The Hamiltonian is given by

Ĥ = − d2

dx2
+ V (x). (4)

Here we adopt units of ~ = 1 and m = 1/2. Then it follows

Ĥ2 =
d4

dx4
− d2

dx2
V (x) − V (x)

d2

dx2
+ V (x)2. (5)

Next we employ the discrete space representation,

xi = (i− 1)∆ + xmin, i = 1, · · · , L,
∆ = (xmax − xmin)/L.

The wave function φ(x) = 〈x | φ〉 is replaced by φ(xi), which
is denoted as φi hereafter. Then the differentials become

d2φ(x)

dx2
→ 1

∆2
(φi+1 + φi−1 − 2φi), (6)

d4φ(x)

dx4
→ 1

∆4
(φi+2 + φi−2 − 4φi+1 − 4φi−1 + 6φi), (7)

V (x)
d2φ(x)

dx2
+

d2V (x)φ(x)

dx2
→

1

∆2
{(V (xi+1) + V (xi))φi+1

+ (V (xi) + V (xi−1))φi−1 − 4V (xi)φi}. (8)

Therefore (Ĥ −E)2 becomes a matrix H2 = [h2i,j ]. In order
to calculate e−βH2 using the Suzuki-Trotter decomposition,
we divide the Hamiltonian squared H2 into four matrices,
H

(k)
2 (k = 1, 2, 3, 4), which are formed by aligning the 4 × 4

matrices along the diagonal line.

H2 = H
(1)
2 + H

(2)
2 + H

(3)
2 + H

(4)
2 . (9)

It is easy to calculate the exponential of the 4 × 4 matrix.
Then we carry out approximate calculations of e−βH2 by

{exp(− β

2Nt
H

(1)
2 ) exp(− β

2Nt
H

(2)
2 ) exp(− β

2Nt
H

(3)
2 )

exp(− β

Nt
H

(4)
2 ) exp(− β

2Nt
H

(3)
2 ) exp(− β

2Nt
H

(2)
2 )

exp(− β

2Nt
H

(1)
2 )}Nt (10)

with the finite Trotter number Nt. The error by this approx-
imation is O( 1

N2
t
), as is well known.
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Let us show numerical results for the harmonic oscillator

V (x) = λx2. (11)

In order to estimate errors owing to the decompositions only,
we compare our numerical results with those obtained by the
diagonalization of H2.

We assume xmin = −25, xmax = 25 and L = 500. The initial
state φI

i is parametrized by

φI
i = φ

(1)
i C1 + ... + φ

(L)
i CL, (12)

C2
1 + ... + C2

L = 1.

Here φ(l) is the eigenstate of the Hamiltonian with the eigen-
value El. Also we assume the ordering El < El+1.

Errors on

I(E) ≡ 〈φ|e−β(Ĥ−E)2 |φ〉, (13)

are shown in Fig. 1 for the two initial wave functions. One
of them, which we will call the wave function (a), is given by

Cn =
1√
20

for n ≤ 20,

Cn = 0 for n ≥ 21.

For another one, the wave function (b), we employ

Cn = C(
1√
20

+
1

100
) for n ≤ 20,

Cn = C/100 for 21 ≤ n ≤ 100,

Cn = 0 for n ≥ 101,

where C is the normalization factor. The latter state is use-
ful to study the effects due to the highly excited states. Here
the error is defined as ratios of ( the approximate value − the
exact value) to the exact value of I(E).
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Fig. 1. The error of I(E) versus the Trotter number Nt for two initial
wave functions. � and E are 200 and 0.094716 for the wave function
(a), while they are 2000 and 0.094716 for the wave function (b).
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Fig. 2. The numerical data (the diamonds) and the analytic result (the
solid line) on I(E). The analytic result on (�=�)1/2 · I(E) are also
presented by the dashed line. Here we use the initial wave function
(b) with E = 0.094716. The Trotter number Nt is fixed to be 20�.

Figure 2 shows the numerical results on I(E) and
p

β/π ·
I(E). (Remember that, in order to approximate the delta
function by the Gaussian function, we need the extra factorp

β/π.) The diamonds show the numerical data, while the
dashed (solid) line is the analytic result with (without) the
extra factor. For 50 ≤ β ≤ 50000, the Gaussian function
multiplied by the extra factor is almost flat with the value
about 0.5, which is the exact value in the continuum limit
L → ∞.

As is expected, the error decreases as 1/N2
t . Also one see

that the operator exp(−β(Ĥ − E)2) can indeed pick up the
state with the energy E.

Three-dimensional problems

Next we will discuss on the three-dimensional problems. Here
the Hamiltonian is

Ĥ = −�∇2 + V (�r). (14)

In calculating e−β[−�∇2+V (�r)−E]2 , we simply extend the
method developed in the one-dimensional case and add terms
of

d4

dx2dy2
,

d4

dy2dz2
,

d4

dz2dx2
.

In the process of including these terms we use

d4φ(x, y, z)

dx2dy2
→

1

∆4
[φi+1,j+1,k + φi+1,j−1,k + φi−1,j+1,k + φi−1,j−1,k

− 2(φi−1,j,k + φi−1,j,k + φi−1,j,k + φi−1,j,k)

+ 4φi,j,k], (15)

and so on.

Let us now show the numerical results on I(E) for the har-
monic oscillator in three dimension. The potential is given
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Fig. 3. The error of I(E) versus the Trotter number Nt for the three di-
mensional harmonic oscillator. Here L3 = 323, xmax = �xmin =

8.0, � = 4.0 and E = 1.1101. The results from the forth order
formula are also plotted.

by

V (�r) = λ | �r |2= λ(x2 + y2 + z2). (16)

The energy eigenvalues and the eigenstates can be obtained
by those in the one-dimensional case. The initial state φ is
given by

φI
i,j,k =

X
1≤l,m,n≤L

φ
(l)
i φ

(m)
j φ

(n)
k Cl,m,n,

where φ
(l)
i denotes an eigenstate in the one-dimensional case.

Figure 3 plots the results obtained from the initial state with

Cl,m,n = 1/
√

1000 for l ≤ 10, m ≤ 10, n ≤ 10,

which indicates that the error is O(1/N2
t ) in this case, too.

Higher order decompositions

In the Ref. 4 the higher order decompositions have been sug-
gested. Here we will apply some of these decompositions to
our calculations of the delta functions.

For simplicity we explain here only the fourth-order decom-
position by two operators Â and B̂. The fourth-order decom-
position is based on the second-order decomposition

Ŝ(x) = exp(
x

2
Â) exp(xB̂) exp(

x

2
Â). (17)

The forth-order formula is given by

exp[x(Â + B̂)] = [Ŝ4(x/Nt)]
Nt + O(x5/N4

t ), (18)

where

Ŝ4(x) = Ŝ(p2x)2Ŝ((1 − p2)x)Ŝ(p2x)2 (19)
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Fig. 4. The error of I(E) versus the Trotter number Nt for the higher
order formulae. The data from the second order decomposition are
also included for comparison. Parameters are the same as those in
Fig. 1.

and p2 = (4 − 41/3)−1.

In Figs. 3 and 4 we plot the results obtained using this for-
mula. It should be noted that the effective number on the
products of Ŝ(x) is used in the axis of abscissas. The results
clearly show the error behaves as N−4

t . We also tried to apply
the sixth-order decomposition in the one dimensional case,
whose results are plotted in Fig. 4. The N−6

t dependence
surely can be seen for large values of Nt. Figure 4 indicates,
however, the results in the sixth-order decomposition are not
so encouraging because the error in this composition exceeds
that in the fourth-order decomposition in a wide range of Nt.

Summary

We present detailed descriptions of a new method to calcu-
late an expectation value of a delta function, which can be re-
placed by a Gaussian function. We apply the Suzuki-Trotter
decompositions to the Gauss function of the Hamiltonian and
carry out numerical calculations on the quantum mechanical
problems. Our results for harmonic oscillator problems in
one- and three-dimensions indicate that this method is use-
ful to study the dynamical quantities.
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