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The present paper explains the importance of the concept of separation of procedures in numerical calculations of
cooperative phenomena. A typical example of applications of this concept is to derive and to make use of exponential
product formulas. Recently systematic higher-order exponential product formulas have been developed by the present
author. Many applications of these higher-order formulas to physics have been reported. This study of exponential
product formulas has lead to the general formulation of quantum analysis. One of the most important applications
of the above exponential product formulas was given in quantum Monte Carlo methods.

Introduction

One of the basic guiding principles in theoretical sciences is
the concept of separation of procedures.1) The present au-
thor has developed many formulas and schemes of numeri-
cal calculations using this concept. One of such schemes is
the Trotter-like formula.2–5) This yields the equivalence the-
orem 6) between a d-dimensional quantum system and the
corresponding (d + 1)-dimensional classical system. This is
the fundamental proposition for the quantum Monte Carlo
method proposed by the present author.6,7)

Quantum Monte Carlo method and negative sign problem

The main idea is to make use of the above equivalence the-
orem.6) The remaining large problem of the quantum Monte
Carlo method is that the so-called “negative sign problem”
appears in frustrated quantum spin systems and higher-
dimensional (d ≥ 2) Fermi systems.8) Many authors are now
trying to solve this problem by finding a clever choice of map-
ping and representation.5,8–13) A more general argument will
be given elsewhere.14)

Higher-order product formulas

Recently the present author discovered a general theory of
constructing higher-order exponential product formulas up to
infinite order.15–29) There have been already reported several
hundred papers in which the above higher-order exponential
product formulas have been used effectively. It should be em-
phasized that the present exponential product formulas have
the great merit that they reserve symmetries of the origi-
nal exponential operators such as the unitarity of the time-
evolution operator and the symplectic property in nonlinear
dynamics, although the Runge-Kutta method, for example,
does not keep these symmetry properties.

Quantum analysis

During the above investigation of the higher-order product
formulas, the present author arrived at the general formula-
tion of quantum analysis.30–36)

The quantum analysis is mathematics which treats non-
commutative operators, in particular, quantum derivative.
This is defined by the derivative of an operator-valued func-
tion f(A) with respect to the operator itself A, namely
df(A)/dA. The present author30) introduced the same no-
tation df(A)/dA as the ordinary derivative of the c-number
function f(x). However the content of df(A)/dA is quite dif-
ferent30–36) from df(x)/dx. Of course, both become identical
in form, when dA commutes with A.

Discussion

The present talk is hoped to stimulate new ideas in the field
of computational physics.

A new scheme for treating unbounded operators, for exam-
ple, a potential of Coulomb interaction will be constructed by
replacing partial exponentials in the above product formulas
by the Cayley formula in each step.37)
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